-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathsimMultiSUunderlayFD.m
172 lines (126 loc) · 8.11 KB
/
simMultiSUunderlayFD.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
function [ rateAchievedbySUs,interObservedPU,SNRdB,TotalPowerOfSUs,TotalChannelsOfSUs,rateAchievedbySUsCentral,interObservedPUCentral,SNRdBCentral,TotalPowerOfSUsCentral ...
] = simMultiSUunderlayFD( numSUPairs,numPUs,timeSlots,IntThreshold,RxSensitivity,PMax,SUPairPos,PUPos)
%This function simulates an underlay network of decentralized SUs and
%cetralized PUs for a given number of time slots.
frequency = 2.4e6; %transmit frequency
vecSUs = [];
PMax = 1;
%maxtimum number of iterations
maxiterations = 100;
hs = 0.8;
alpha = 0.001;
%% matrices to collect power values and channel allocation values
P_mat = zeros(numSUPairs,numPUs*2);
X_mat = zeros(numSUPairs,numPUs*2);
PUIntOnSU = zeros(numPUs,numSUPairs*2);
%% parameters to collect QoS
SNRdB = zeros(timeSlots,numPUs);
interObservedPU = zeros(timeSlots,numPUs);
rateAchievedbySUs = zeros(timeSlots,numSUPairs);
TotalPowerOfSUs = zeros(timeSlots,numSUPairs*2);
TotalChannelsOfSUs = zeros(timeSlots,numSUPairs*2);
SUIntAtPU = zeros(numPUs,1);
SNRdBCentral = zeros(timeSlots,numPUs);
interObservedPUCentral = zeros(timeSlots,numPUs);
rateAchievedbySUsCentral = zeros(timeSlots,numSUPairs);
TotalPowerOfSUsCentral = zeros(timeSlots,numSUPairs*2);
TotalChannelsOfSUsCentral = zeros(timeSlots,numSUPairs*2);
SUIntAtPUCentral = zeros(numPUs,1);
[gainMatSUTrnsSURecv,gainMatSUTrnsPURecv,gainMatPUTrnsSURecv,gainMatSUTransMSRecv,gainMatPUTransPURecv] = chanGainCalc(SUPairPos,PUPos,frequency,hs,alpha);
PUTxPower = 5*(IntThreshold+abs(randn()*sqrt(PMax*1e-6)))./gainMatPUTransPURecv; % PU transmit power
for channel=1:numPUs
PUIntOnSU(channel,:) = gainMatPUTrnsSURecv(channel,:)*PUTxPower(channel,1);
end
%% create SU objects
for SUIndex=1:numSUPairs
%Gamma initialize
GammaInit = PUIntOnSU(:,[SUIndex,SUIndex+numSUPairs]);
vecSUs = [vecSUs,SecondaryUserFDJointAlloc(SUIndex,gainMatSUTrnsSURecv([SUIndex,SUIndex+numSUPairs],:),gainMatSUTrnsPURecv([SUIndex,SUIndex+numSUPairs],:),...
GammaInit,PMax,maxiterations,hs,alpha,SUIntAtPU,IntThreshold,RxSensitivity,numSUPairs)];
end
%% simulate for time slots
for timeSlot=1:timeSlots
disp('Timeslot')
disp(timeSlot)
% PU and SU position generation
%[ SUPairPos,PUPos ] = positionGenSUandPU( gridSize,numSUPairs,numPUs);
[gainMatSUTrnsSURecv,gainMatSUTrnsPURecv,gainMatPUTrnsSURecv,gainMatSUTransMSRecv,gainMatPUTransPURecv] = chanGainCalc(SUPairPos,PUPos,frequency,hs,alpha);
if timeSlot >1
%PUTxPower = 5*(PMax*1e-3)./gainMatPUTransPURecv';
PUTxPower = 5*(IntThreshold+abs(randn()*sqrt(PMax*1e-6)))./gainMatPUTransPURecv'; % PU transmit power
%PUTxPower =PUTxPower';
else
PUTxPower = 5*(abs(randn()*sqrt(PMax*1e-6))+IntThreshold)./gainMatPUTransPURecv'; % PU transmit power
end
for channel=1:numPUs
PUIntOnSU(channel,:) = gainMatPUTrnsSURecv(channel,:)*PUTxPower(1,channel);
end
IntAtMS=zeros(numPUs,1);
for SUTxIndex=1:numSUPairs
IntAtMS=IntAtMS+vecSUs(SUTxIndex).gainVecSUTrnsMSRecv(1,:)'.*vecSUs(SUTxIndex).P(1:numPUs,1);
IntAtMS=IntAtMS+vecSUs(SUTxIndex).gainVecSUTrnsMSRecv(2,:)'.*vecSUs(SUTxIndex).P(numPUs+1:end,1);
end
GammaInit=PUIntOnSU;
GammaInitCentral=PUIntOnSU;
for SUIndex=randperm(numSUPairs)
vecSUs(SUIndex).GammaInit = GammaInit(:,[SUIndex,SUIndex+numSUPairs]);
vecSUs(SUIndex).J = IntAtMS;
% update channel gains
vecSUs(SUIndex).gainVecSUTrnsSURecv = gainMatSUTrnsSURecv([SUIndex,SUIndex+numSUPairs],:);
vecSUs(SUIndex).gainVecSUTrnsMSRecv = gainMatSUTrnsPURecv([SUIndex,SUIndex+numSUPairs],:);
%initiate X,Gamma and P
vecSUs(SUIndex).optXPGamma();
%centralPower = centralizedAllocation(PMax,hs,alpha,gainMatSUTrnsPURecv,2,PUIntOnSU,PUTxPower,maxiterations);
centralPower = zeros(numPUs,2*numSUPairs);
for SURxIndex= 1:numSUPairs
GammaInit(:,SURxIndex)=GammaInit(:,SURxIndex)+vecSUs(SUIndex).gainVecSUTrnsSURecv(1,SURxIndex)*vecSUs(SUIndex).P(1:numPUs,1)...
+vecSUs(SUIndex).gainVecSUTrnsSURecv(2,SURxIndex)*vecSUs(SUIndex).P(numPUs+1:end,1);
GammaInit(:,SURxIndex+numSUPairs)=GammaInit(:,SURxIndex+numSUPairs)+vecSUs(SUIndex).gainVecSUTrnsSURecv(1,SURxIndex+numSUPairs)*vecSUs(SUIndex).P(1:numPUs,1)...
+vecSUs(SUIndex).gainVecSUTrnsSURecv(2,SURxIndex+numSUPairs)*vecSUs(SUIndex).P(numPUs+1:end,1);
%% central
GammaInitCentral(:,SURxIndex)=GammaInitCentral(:,SURxIndex)+vecSUs(SUIndex).gainVecSUTrnsSURecv(1,SURxIndex)*centralPower(1:numPUs,SUIndex)...
+vecSUs(SUIndex).gainVecSUTrnsSURecv(2,SURxIndex)*centralPower(1:numPUs,SUIndex+numSUPairs);
GammaInitCentral(:,SURxIndex+numSUPairs)=GammaInitCentral(:,SURxIndex+numSUPairs)+vecSUs(SUIndex).gainVecSUTrnsSURecv(1,SURxIndex+numSUPairs)*centralPower(1:numPUs,SUIndex)...
+vecSUs(SUIndex).gainVecSUTrnsSURecv(2,SURxIndex+numSUPairs)*centralPower(1:numPUs,SUIndex+numSUPairs);
end
end
% %% execute the optimization of SU parameters in parallel
% parfor index = 1: numSUPairs
% vecSUDummy = vecSUs(index);
% vecSUDummy.optXPGamma();
% vecSUs(index)=vecSUDummy;
% %vecSUs(index).optXPGamma();
% end
%% get the optimized parameters and find if the QoS is met and if the PU interference threshold is violated
for SUIndex=1:numSUPairs
P_mat(SUIndex,:) = vecSUs(SUIndex).P;
X_mat(SUIndex,:) = vecSUs(SUIndex).X;
% disp('underlay');
% disp(P_mat);
% disp(X_mat);
%
end
n=numPUs;
for SUIndex=1:numSUPairs
GammaInitlinear=[GammaInit(:,SUIndex);GammaInit(:,SUIndex+numSUPairs)];
GammaInitlinearCtrl=[GammaInitCentral(:,SUIndex);GammaInitCentral(:,SUIndex+numSUPairs)];
cbv = prod([(GammaInitlinear(1:n)+vecSUs(SUIndex).P(n+1:end)*vecSUs(SUIndex).gainVecSUTrnsSURecv(2,SUIndex))./(GammaInitlinear(1:n)); ...
(GammaInitlinear(n+1:end)+vecSUs(SUIndex).P(1:n)*vecSUs(SUIndex).gainVecSUTrnsSURecv(1,SUIndex+numSUPairs))./(GammaInitlinear(n+1:end))]);
rateAchievedbySUs(timeSlot,SUIndex) = log2(cbv);
TotalPowerOfSUs(timeSlot,SUIndex) = sum(P_mat(SUIndex,:));
TotalChannelsOfSUs(timeSlot,SUIndex) = sum(X_mat(SUIndex,:));
%% central
cbvCentral = prod([(GammaInitlinearCtrl(1:n)+centralPower(1:numPUs,SUIndex+numSUPairs)*vecSUs(SUIndex).gainVecSUTrnsSURecv(2,SUIndex))./(GammaInitlinearCtrl(1:n)); ...
(GammaInitlinearCtrl(n+1:end)+centralPower(1:numPUs,SUIndex)*vecSUs(SUIndex).gainVecSUTrnsSURecv(1,SUIndex++numSUPairs))./(GammaInitlinearCtrl(n+1:end))]);
rateAchievedbySUsCentral(timeSlot,SUIndex) = log2(cbvCentral);
TotalPowerOfSUsCentral(timeSlot,SUIndex) = sum([centralPower(1:numPUs,SUIndex);centralPower(1:numPUs,SUIndex+numSUPairs)]);
end
for channel=1:numPUs
interObservedPU(timeSlot,channel) = gainMatSUTrnsPURecv(1:numSUPairs,channel)'*((P_mat(:,channel)))+gainMatSUTrnsPURecv(numSUPairs+1:end,channel)'*((P_mat(:,channel+numPUs)));
SNRdB(timeSlot,channel) = 10*log10((PUTxPower(1,channel)*gainMatPUTransPURecv(channel,1))./(abs(randn()*sqrt(PMax*1e-6)) + interObservedPU(timeSlot,channel)));
%% central
interObservedPUCentral(timeSlot,channel) = (centralPower(channel,:))*gainMatSUTrnsPURecv(:,channel);
SNRdBCentral(timeSlot,channel) = 10*log10((PUTxPower(1,channel)*gainMatPUTransPURecv(channel,1))./(abs(randn()*sqrt(PMax*1e-6)) +interObservedPUCentral(timeSlot,channel)));
end
end
end