-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimple_cnn1d_model.py
110 lines (89 loc) · 2.61 KB
/
simple_cnn1d_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
# -*- coding: utf-8 -*-
"""
Created on Thu Jan 11 00:52:35 2018
@author: aditya
"""
from keras.models import Sequential
from keras.layers import Dense,Dropout
from sklearn.metrics import accuracy_score
from keras.utils import to_categorical
import numpy as np
np.random.seed(1234)
train_x=np.load('train_x.npy')
train_y=np.load('train_y.npy')
#test_x=np.load('test_x.npy')
#test_y=np.load('test_y.npy')
input_neurons=200
input_dim=3072
act1='relu'
act2='relu'
act3='relu'
act4='softmax'
num_classes=10
dropout=0.2
train_y=to_categorical(train_y, num_classes=None)
model = Sequential()
filters = 32
kernel_size = 3
"""
model.add(Dense(input_neurons, input_dim = input_dim, activation=act1))
model.add(Dropout(dropout))
model.add(Dense(input_neurons, activation=act2))
model.add(Dropout(dropout))
model.add(Dense(input_neurons, activation=act3))
model.add(Dropout(dropout))
model.add(Dense(num_classes, activation=act4))
#model.summary()
model.compile(loss='categorical_crossentropy',
optimizer='rmsprop',
metrics=['accuracy'])
# Fit the model
model.fit(train_x, train_y, epochs=10, batch_size=32, verbose=1)
"""
import keras
from keras.datasets import cifar10
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten
from keras.layers import Conv1D, MaxPooling1D
import os
model.add(Conv1D(filters, kernel_size,padding='same',
input_dim=input_dim))
# input_dim=train_x.shape[1]))
model.add(Activation('relu'))
model.add(Conv1D(filters,kernel_size))
model.add(Activation('relu'))
model.add(MaxPooling1D(pool_size=2))
model.add(Dropout(0.25))
model.add(Conv1D(filters*2,kernel_size, padding='same'))
model.add(Activation('relu'))
model.add(Conv1D(filters*2, 2))
model.add(Activation('relu'))
model.add(MaxPooling1D(pool_size=2))
model.add(Dropout(0.25))
#model.add(Flatten())
model.add(Dense(filters*4))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes))
model.add(Activation('softmax'))
model.summary()
bre
# initiate RMSprop optimizer
opt = keras.optimizers.rmsprop(lr=0.0001, decay=1e-6)
# Let's train the model using RMSprop
model.compile(loss='categorical_crossentropy',
optimizer=opt,
metrics=['accuracy'])
#x_train = x_train.astype('float32')
#x_test = x_test.astype('float32')
#x_train /= 255
#x_test /= 255
model.fit(train_x, train_y, epochs=10, batch_size=32, verbose=1)
"""
# calculate predictions
y_pred = model.predict(test_x)
# round predictions
acc2=accuracy_score(test_y, y_pred)
print "Accuracy",acc2
"""