-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimple_dnn_model.py
59 lines (45 loc) · 1.25 KB
/
simple_dnn_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
# -*- coding: utf-8 -*-
"""
Created on Thu Jan 11 00:52:35 2018
@author: aditya
"""
from keras.models import Sequential
from keras.layers import Dense,Dropout
from sklearn.metrics import accuracy_score
from keras.utils import to_categorical
import numpy as np
np.random.seed(1234)
train_x=np.load('train_x.npy')
train_y=np.load('train_y.npy')
#test_x=np.load('test_x.npy')
#test_y=np.load('test_y.npy')
input_neurons=200
input_dim=3072
act1='sigmoid'
act2='sigmoid'
act3='sigmoid'
act4='sigmoid'
num_classes=10
dropout=0.2
model = Sequential()
model.add(Dense(input_neurons, input_dim = input_dim, activation=act1))
model.add(Dropout(dropout))
model.add(Dense(input_neurons, activation=act2))
model.add(Dropout(dropout))
model.add(Dense(input_neurons, activation=act3))
model.add(Dropout(dropout))
model.add(Dense(num_classes, activation=act4))
#model.summary()
model.compile(loss='categorical_crossentropy',
optimizer='adam',
metrics=['accuracy'])
train_y=to_categorical(train_y, num_classes=None)
# Fit the model
model.fit(train_x, train_y, epochs=10, batch_size=32, verbose=2)
"""
# calculate predictions
y_pred = model.predict(test_x)
# round predictions
acc2=accuracy_score(test_y, y_pred)
print "Accuracy",acc2
"""