Skip to content

Commit

Permalink
Initial commit
Browse files Browse the repository at this point in the history
  • Loading branch information
chao1224 committed Aug 30, 2023
1 parent 93493be commit 8f31c0e
Show file tree
Hide file tree
Showing 83 changed files with 17,386 additions and 1 deletion.
51 changes: 51 additions & 0 deletions Dockerfile
Original file line number Diff line number Diff line change
@@ -0,0 +1,51 @@
FROM nvcr.io/nvidia/pytorch:22.01-py3 as base

#create a new new user
RUN useradd -ms /bin/bash shengchaol

# #change to this user
# USER shengchaol

#set working directory
WORKDIR /home/shengchaol

RUN chmod -R 777 /home/shengchaol
RUN chmod -R 777 /usr/bin
RUN chmod -R 777 /bin
RUN chmod -R 777 /usr/local
RUN chmod -R 777 /opt/conda

RUN conda install -y python=3.7

RUN conda install -y -c rdkit rdkit=2020.09.1.0
RUN conda install -y -c conda-forge -c pytorch pytorch=1.9.1

RUN conda install -y -c pyg -c conda-forge pyg

RUN pip install requests
RUN pip install tqdm
RUN pip install matplotlib
RUN pip install spacy

# for SciBert
RUN conda install -y boto3
RUN pip install transformers

# for MoleculeNet
RUN pip install ogb

# install pysmilesutils
RUN python -m pip install git+https://github.com/MolecularAI/pysmilesutils.git

RUN pip install deepspeed

# install Megatron
RUN cd /tmp && git clone https://github.com/MolecularAI/MolBART.git --branch megatron-molbart-with-zinc && cd /tmp/MolBART/megatron_molbart/Megatron-LM-v1.1.5-3D_parallelism && pip install .

# install apex
RUN cd /tmp && git clone https://github.com/chao1224/apex.git
RUN cd /tmp/apex/ && pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./


#expose port for Jupyter
EXPOSE 8888
64 changes: 64 additions & 0 deletions LICENSE
Original file line number Diff line number Diff line change
@@ -0,0 +1,64 @@
NVIDIA Source Code License for MoleculeSTM

1. Definitions

“Licensor” means any person or entity that distributes its Work.

“Software” means the original work of authorship made available under this License.

“Work” means the Software and any additions to or derivative works of the Software that are made available under
this License.

The terms “reproduce,” “reproduction,” “derivative works,” and “distribution” have the meaning as provided under
U.S. copyright law; provided, however, that for the purposes of this License, derivative works shall not include
works that remain separable from, or merely link (or bind by name) to the interfaces of, the Work.

Works, including the Software, are “made available” under this License by including in or with the Work either
(a) a copyright notice referencing the applicability of this License to the Work, or (b) a copy of this License.

2. License Grant

2.1 Copyright Grant. Subject to the terms and conditions of this License, each Licensor grants to you a perpetual,
worldwide, non-exclusive, royalty-free, copyright license to reproduce, prepare derivative works of, publicly
display, publicly perform, sublicense and distribute its Work and any resulting derivative works in any form.

3. Limitations

3.1 Redistribution. You may reproduce or distribute the Work only if (a) you do so under this License, (b) you
include a complete copy of this License with your distribution, and (c) you retain without modification any
copyright, patent, trademark, or attribution notices that are present in the Work.

3.2 Derivative Works. You may specify that additional or different terms apply to the use, reproduction, and
distribution of your derivative works of the Work (“Your Terms”) only if (a) Your Terms provide that the use
limitation in Section 3.3 applies to your derivative works, and (b) you identify the specific derivative works
that are subject to Your Terms. Notwithstanding Your Terms, this License (including the redistribution
requirements in Section 3.1) will continue to apply to the Work itself.

3.3 Use Limitation. The Work and any derivative works thereof only may be used or intended for use
non-commercially. Notwithstanding the foregoing, NVIDIA and its affiliates may use the Work and any derivative
works commercially. As used herein, “non-commercially” means for research or evaluation purposes only.

3.4 Patent Claims. If you bring or threaten to bring a patent claim against any Licensor (including any claim,
cross-claim or counterclaim in a lawsuit) to enforce any patents that you allege are infringed by any Work, then
your rights under this License from such Licensor (including the grant in Section 2.1) will terminate immediately.

3.5 Trademarks. This License does not grant any rights to use any Licensor’s or its affiliates’ names, logos,
or trademarks, except as necessary to reproduce the notices described in this License.

3.6 Termination. If you violate any term of this License, then your rights under this License (including the
grant in Section 2.1) will terminate immediately.

4. Disclaimer of Warranty.

THE WORK IS PROVIDED “AS IS” WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING
WARRANTIES OR CONDITIONS OF M ERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE OR NON-INFRINGEMENT. YOU
BEAR THE RISK OF UNDERTAKING ANY ACTIVITIES UNDER THIS LICENSE.

5. Limitation of Liability.

EXCEPT AS PROHIBITED BY APPLICABLE LAW, IN NO EVENT AND UNDER NO LEGAL THEORY, WHETHER IN TORT (INCLUDING
NEGLIGENCE), CONTRACT, OR OTHERWISE SHALL ANY LICENSOR BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF OR RELATED TO THIS LICENSE, THE USE OR
INABILITY TO USE THE WORK (INCLUDING BUT NOT LIMITED TO LOSS OF GOODWILL, BUSINESS INTERRUPTION, LOST PROFITS OR
DATA, COMPUTER FAILURE OR MALFUNCTION, OR ANY OTHER COMM ERCIAL DAMAGES OR LOSSES), EVEN IF THE LICENSOR HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Empty file added MoleculeSTM/__init__.py
Empty file.
Original file line number Diff line number Diff line change
@@ -0,0 +1,106 @@
import argparse
import os
import numpy as np
from rdkit import Chem
from rdkit.Chem import Descriptors

import torch
from torch.utils.data import DataLoader as torch_DataLoader

from MoleculeSTM.utils import freeze_network
from MoleculeSTM.datasets import ZINC15_Datasets_Only_SMILES, PubChem_Datasets_Only_SMILES
from MoleculeSTM.models.mega_molbart.mega_mol_bart import MegaMolBART

props = [
"qed", "MolWt", "MolLogP", "TPSA",
"HeavyAtomCount", "NumAromaticRings", "NumHAcceptors", "NumHDonors", "NumRotatableBonds"
]
props = [
"MolWt", "MolLogP"
]
prop_pred = [(n, func) for n, func in Descriptors.descList if n.split("_")[-1] in props]


if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--seed", type=int, default=42)
parser.add_argument("--device", type=int, default=0)
parser.add_argument("--verbose", type=int, default=1)
parser.add_argument("--dataspace_path", type=str, default="../../Datasets")
parser.add_argument("--dataset", type=str, default="ZINC15")
parser.add_argument("--molecule_type", type=str, default="MegaMolBART", choices=["MegaMolBART", "Graph"])

########## for MoleculeSTM ##########
parser.add_argument("--CLIP_input_model_dir", type=str, default="../../pretrained_model")
parser.add_argument("--SSL_emb_dim", type=int, default=256)

########## for generation ##########
parser.add_argument("--generation_model_dir", type=str, default="../../Datasets/pretrained_MegaMolBART/checkpoints")

########## for optimization ##########
parser.add_argument("--batch_size", type=int, default=64)
parser.add_argument("--num_workers", type=int, default=8)

args = parser.parse_args()
print(args)

# This is loading from the pretarined_MegaMolBART
MegaMolBART_wrapper = MegaMolBART(input_dir=args.generation_model_dir, output_dir=None)
molecule_model_generation = MegaMolBART_wrapper.model
print("Loading from pretrained MegaMolBART ({}).".format(args.generation_model_dir))
molecule_dim_generation = 256

device = torch.device("cuda:" + str(args.device)) \
if torch.cuda.is_available() else torch.device("cpu")
molecule_model_generation = molecule_model_generation.to(device)

np.random.seed(args.seed)
torch.random.manual_seed(args.seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(args.seed)
device = torch.device("cuda:" + str(args.device)) \
if torch.cuda.is_available() else torch.device("cpu")

freeze_network(molecule_model_generation)
molecule_model_generation.eval()

if args.molecule_type == "MegaMolBART":
if args.dataset == "ZINC15":
dataset_root = os.path.join(args.dataspace_path, "ZINC15_data")
dataset = ZINC15_Datasets_Only_SMILES(dataset_root)
elif "PubChem" in args.dataset:
dataset_root = os.path.join(args.dataspace_path, "PubChem_data")
dataset = PubChem_Datasets_Only_SMILES(dataset_root)
else:
raise Exception
dataloader_class = torch_DataLoader
else:
raise Exception

dataloader = dataloader_class(dataset, batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers)

for batch_idx, batch in enumerate(dataloader):
SMILES_list = batch
print("SMILES_list", SMILES_list)

for original_SMILES in SMILES_list:
mol = Chem.MolFromSmiles(original_SMILES)
for name, func in prop_pred:
value = func(mol)
print("{}: {}".format(name, value))
canon_original_SMILES = Chem.MolToSmiles(mol)

latent_code_init, pad_mask_init = MegaMolBART_wrapper.smileslist2embedding_model_given(molecule_model_generation, [original_SMILES]) # [pad, B, d], [pad, B]
print("latent_code:\t", latent_code_init[0, :, :5])

latent_code_init, pad_mask_init = MegaMolBART_wrapper.smileslist2embedding_model_given(molecule_model_generation, [canon_original_SMILES]) # [pad, B, d], [pad, B]
print("latent_code:\t", latent_code_init[0, :, :5])

generated_SMILES = MegaMolBART_wrapper.inverse_transform([latent_code_init], pad_mask_init.bool().cuda(), k=1, sanitize=True)
print("original SMILES: \t", original_SMILES)
print("original SMILES (canon): \t", canon_original_SMILES)
print("reconstructured SMILES: \t", generated_SMILES[0])
print()

if batch_idx >= 9:
break
Loading

0 comments on commit 8f31c0e

Please sign in to comment.