-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathtrain.lua
596 lines (503 loc) · 23.7 KB
/
train.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
require 'torch'
require 'nn'
require 'nngraph'
-- exotic things
require 'loadcaffe'
-- local imports
local utils = require 'misc_saver.utils'
require 'misc_saver.DataLoader'
require 'misc_saver.LanguageModel'
local net_utils = require 'misc_saver.net_utils'
require 'misc_saver.optim_updates'
-- nngraph.setDebug(true)
-------------------------------------------------------------------------------
-- Input arguments and options
-------------------------------------------------------------------------------
cmd = torch.CmdLine()
cmd:text()
cmd:text('Train an Image Captioning model')
cmd:text()
cmd:text('Options')
cmd:option('-silent', false, 'print opt to the screen?')
-- data settings
cmd:option('-input_h5', '', 'dirctory of dataset')
cmd:option('-input_json', '', 'dirctory of json file')
-- glove vector
cmd:option('-use_glove', true, 'whether to use glove vector')
cmd:option('-glove_path','', 'specify glove vector data path')
cmd:option('-glove_dim',300, 'glove vetor dimension, by default, use 300 dimension')
-- VGG16 CNN model
cmd:option('-cnn_proto','../cnn_model/VGG_ILSVRC_16_layers_deploy.prototxt','path to CNN prototxt file in Caffe format. Note this MUST be a VGGNet-16 right now.')
cmd:option('-cnn_model','../cnn_model/VGG_ILSVRC_16_layers.caffemodel','path to CNN model file containing the weights, Caffe format. Note this MUST be a VGGNet-16 right now.')
cmd:option('-start_from', '', 'path to a model checkpoint to initialize model weights from. Empty = don\'t')
cmd:option('-optim_state_from', '', 'path to a model checkpoint to initialize model weights from. Empty = don\'t')
-- Model settings
cmd:option('-rnn_size',128,'size of the rnn in number of hidden nodes in each layer')
cmd:option('-word_encoding_size',128,'the encoding size of each token in the vocabulary, and the image.')
cmd:option('-image_encoding_size',128,'the encoding size of each token in the vocabulary, and the image.')
cmd:option('-attention_size', 128, 'attention size of the attention unit')
-- Optimization: General
cmd:option('-max_iters',-1, 'max number of iterations to run for (-1 = run forever)')
cmd:option('-batch_size',8,'what is the batch size in number of images per batch? (there will be x seq_per_img sentences)')
cmd:option('-grad_clip',0.1,'clip gradients at this value (note should be lower than usual 5 because we normalize grads by both batch and seq_length)')
cmd:option('-drop_prob_lm', 0.5, 'strength of dropout in the Language Model RNN')
cmd:option('-finetune_cnn_after', -1, 'After what iteration do we start finetuning the CNN? (-1 = disable; never finetune, 0 = finetune from start)')
cmd:option('-seq_per_img',5,'number of captions to sample for each image during training. Done for efficiency since CNN forward pass is expensive. E.g. coco has 5 sents/image')
-- Optimization: for the Language Model
-- sgdmom: sgd with nesterov update
-- sgdm: sgd with momentum, standard update
cmd:option('-optim','adam','what update to use? rmsprop|sgd|sgdmom|adagrad|adam')
cmd:option('-learning_rate',1e-5, 'learning rate')
cmd:option('-learning_rate_decay_start', -1, 'at what iteration to start decaying learning rate? (-1 = dont)')
cmd:option('-learning_rate_decay_every', 12000, 'every how many iterations thereafter to drop LR by half?')
cmd:option('-optim_alpha',0.8,'alpha for adagrad/rmsprop/momentum/adam')
cmd:option('-optim_beta',0.999,'beta used for adam')
cmd:option('-optim_epsilon',1e-8,'epsilon that goes into denominator for smoothing')
-- Optimization: for the CNN
cmd:option('-cnn_optim','adam','optimization to use for CNN')
cmd:option('-cnn_optim_alpha',0.8,'alpha for momentum of CNN')
cmd:option('-cnn_optim_beta',0.999,'alpha for momentum of CNN')
cmd:option('-cnn_learning_rate',1e-4,'learning rate for the CNN')
cmd:option('-cnn_weight_decay', 0, 'L2 weight decay just for the CNN')
-- Evaluation/Checkpointing
cmd:option('-val_images_use', 5000, 'how many images to use when periodically evaluating the validation loss? (-1 = all)')
cmd:option('-save_checkpoint_every', 2500, 'how often to save a model checkpoint?, 2500 by default')
cmd:option('-checkpoint_path', '', 'folder to save checkpoints into (empty = this folder)')
cmd:option('-save_optim_state', true, 'save optim state and next id in data to restore training')
cmd:option('-language_eval', 1, 'Evaluate language as well (1 = yes, 0 = no)? BLEU/CIDEr/METEOR/ROUGE_L? requires coco-caption code from Github.')
cmd:option('-losses_log_every', 25, 'How often do we snapshot losses, for inclusion in the progress dump? (0 = disable)')
-- misc
cmd:option('-backend', 'cudnn', 'nn|cudnn')
cmd:option('-id', '', 'an id identifying this run/job. used in cross-val and appended when writing progress files')
cmd:option('-seed', 123, 'random number generator seed to use')
cmd:option('-gpuid', 0, 'which gpu to use. -1 = use CPU')
cmd:text()
-------------------------------------------------------------------------------
-- Basic Torch initializations
-------------------------------------------------------------------------------
local opt = cmd:parse(arg)
if not opt.silent then
print(opt)
end
torch.manualSeed(opt.seed)
torch.setdefaulttensortype('torch.FloatTensor') -- for CPU
if opt.gpuid >= 0 then
require 'cutorch'
require 'cunn'
if opt.backend == 'cudnn' then require 'cudnn' end
cutorch.manualSeed(opt.seed)
cutorch.setDevice(opt.gpuid + 1) -- note +1 because lua is 1-indexed
end
-------------------------------------------------------------------------------
-- Create the Data Loader instance
-------------------------------------------------------------------------------
--[[
isDebug = false
if isDebug then
-- do nothing, no loading the data
else
--]]
local loader = DataLoader{h5_file = opt.input_h5, json_file = opt.input_json}
--[[
end
--]]
-------------------------------------------------------------------------------
-- Initialize the networks
-------------------------------------------------------------------------------
local protos = {}
--[[
isDebug = false
if isDebug then
-- create protos from scratch
-- intialize language model
local lmOpt = {}
lmOpt.vocab_size = 1000
lmOpt.word_encoding_size = opt.word_encoding_size
lmOpt.image_encoding_size = opt.image_encoding_size
lmOpt.rnn_size = opt.rnn_size
lmOpt.attention_size = opt.attention_size
lmOpt.num_layers = 1
lmOpt.dropout = opt.drop_prob_lm
lmOpt.seq_length = 16
lmOpt.batch_size = opt.batch_size * opt.seq_per_img
protos.lm = nn.LanguageModel(lmOpt)
-- initialize the ConvNet
local cnn_backend = opt.backend
if opt.gpuid == -1 then cnn_backend = 'nn' end -- override to nn if gpu is disabled
local load_cnn = true
if load_cnn then
local cnn_raw = loadcaffe.load(opt.cnn_proto, opt.cnn_model, cnn_backend)
protos.cnn = net_utils.build_cnn_v1(cnn_raw, {encoding_size = opt.image_encoding_size, backend = cnn_backend})
else
protos.cnn = nn.Sequential()
protos.cnn:add(nn.Linear(224, opt.image_encoding_size))
end
-- initialize a special FeatExpander module that "corrects" for the batch number discrepancy
-- where we have multiple captions per one image in a batch. This is done for efficiency
-- because doing a CNN forward pass is expensive. We expand out the CNN features for each sentence
protos.expander = nn.FeatExpander(opt.seq_per_img)
-- criterion for the language model
protos.crit = nn.LanguageModelCriterion()
else
--]]
if string.len(opt.start_from) > 0 then
-- load protos from file
print('initializing weights from ' .. opt.start_from)
local loaded_checkpoint = torch.load(opt.start_from)
protos = loaded_checkpoint.protos
net_utils.unsanitize_gradients(protos.cnn)
local lm_modules = protos.lm:getModulesList()
for k,v in pairs(lm_modules) do net_utils.unsanitize_gradients(v) end
protos.crit = nn.LanguageModelCriterion() -- not in checkpoints, create manually
protos.expander = nn.FeatExpander(opt.seq_per_img) -- not in checkpoints, create manually
else
-- create protos from scratch
-- intialize language model
local lmOpt = {}
lmOpt.vocab_size = loader:getVocabSize()
lmOpt.word_encoding_size = opt.word_encoding_size
lmOpt.image_encoding_size = opt.image_encoding_size
lmOpt.rnn_size = opt.rnn_size
lmOpt.attention_size = opt.attention_size
lmOpt.num_layers = 1
lmOpt.dropout = opt.drop_prob_lm
lmOpt.seq_length = loader:getSeqLength()
lmOpt.batch_size = opt.batch_size * opt.seq_per_img
-- glove parameters
lmOpt.use_glove = opt.use_glove
lmOpt.ix_to_word = loader:getVocab()
lmOpt.glove_path = opt.glove_path
lmOpt.glove_dim = opt.glove_dim
protos.lm = nn.LanguageModel(lmOpt)
-- initialize the ConvNet
local cnn_backend = opt.backend
if opt.gpuid == -1 then cnn_backend = 'nn' end -- override to nn if gpu is disabled
local cnn_raw = loadcaffe.load(opt.cnn_proto, opt.cnn_model, cnn_backend)
protos.cnn = net_utils.build_cnn_v1(cnn_raw, {encoding_size = opt.image_encoding_size, backend = cnn_backend})
-- initialize a special FeatExpander module that "corrects" for the batch number discrepancy
-- where we have multiple captions per one image in a batch. This is done for efficiency
-- because doing a CNN forward pass is expensive. We expand out the CNN features for each sentence
protos.expander = nn.FeatExpander(opt.seq_per_img)
-- criterion for the language model
protos.crit = nn.LanguageModelCriterion()
end
--[[
end
--]]
-- ship everything to GPU, maybe
if opt.gpuid >= 0 then
for k,v in pairs(protos) do v:cuda() end
end
--[[
isDebug = false
test_output = nil
test_expanded = nil
if isDebug then
local load_cnn = true
if load_cnn then
test_input = torch.CudaTensor(5, 3, 224, 224):uniform(-1, 1)
else
test_input = torch.CudaTensor(5, 224):uniform(-1, 1)
end
-- test_output will be: 5 * 512 * 14 * 14
test_output = protos.cnn:forward(test_input)
test_expended = protos.expander:forward(test_output)
end
--]]
-- flatten and prepare all model parameters to a single vector.
-- Keep CNN params separate in case we want to try to get fancy with different optims on LM/CNN
local params, grad_params = protos.lm:getParameters()
local cnn_params, cnn_grad_params = protos.cnn:getParameters()
print('total number of parameters in LM: ', params:nElement())
print('total number of parameters in CNN: ', cnn_params:nElement())
assert(params:nElement() == grad_params:nElement())
assert(cnn_params:nElement() == cnn_grad_params:nElement())
-- construct thin module clones that share parameters with the actual
-- modules. These thin module will have no intermediates and will be used
-- for checkpointing to write significantly smaller checkpoint files
local thin_lm = protos.lm:clone()
thin_lm.lstm_att:share(protos.lm.lstm_att, 'weight', 'bias') -- TODO: we are assuming that LM has specific members! figure out clean way to get rid of, not modular.
thin_lm.lookup_table:share(protos.lm.lookup_table, 'weight', 'bias')
thin_lm.input_attention_model:share(protos.lm.input_attention_model, 'weight', 'bias')
thin_lm.linear_model:share(protos.lm.linear_model, 'weight', 'bias')
local thin_cnn = protos.cnn:clone('weight', 'bias')
-- sanitize all modules of gradient storage so that we dont save big checkpoints
net_utils.sanitize_gradients(thin_cnn)
local lm_modules = thin_lm:getModulesList()
for k,v in pairs(lm_modules) do net_utils.sanitize_gradients(v) end
-- create clones and ensure parameter sharing. we have to do this
-- all the way here at the end because calls such as :cuda() and
-- :getParameters() reshuffle memory around.
protos.lm:createClones()
collectgarbage() -- "yeah, sure why not"
-------------------------------------------------------------------------------
-- Validation evaluation
-------------------------------------------------------------------------------
local function eval_split(split, evalopt)
local verbose = utils.getopt(evalopt, 'verbose', true)
local val_images_use = utils.getopt(evalopt, 'val_images_use', true)
protos.cnn:evaluate()
protos.lm:evaluate()
loader:resetIterator(split) -- rewind iteator back to first datapoint in the split
local n = 0
local loss_sum = 0
local loss_evals = 0
local predictions = {}
local vocab = loader:getVocab()
while true do
-- fetch a batch of data
local data = loader:getBatch{batch_size = 8, split = split, seq_per_img = opt.seq_per_img}
data.images = net_utils.prepro(data.images, false, opt.gpuid >= 0) -- preprocess in place, and don't augment
n = n + data.images:size(1)
-- expand the data.semantic_words: batch_size * 16(attribute words per image)
local exp_attrs = protos.expander:forward(data.semantic_words):clone()
-- forward the model to get loss
local feats = protos.cnn:forward(data.images)
local expanded_feats = protos.expander:forward(feats):clone()
local logprobs = protos.lm:forward{expanded_feats, data.labels, exp_attrs}
local loss = protos.crit:forward(logprobs, data.labels)
loss_sum = loss_sum + loss
loss_evals = loss_evals + 1
-- forward the model to also get generated samples for each image
-- input: feats, data.semantic_words
local seq = protos.lm:sample({feats, data.semantic_words})
local sents = net_utils.decode_sequence(vocab, seq)
for k=1,#sents do
local entry = {image_id = data.infos[k].id, caption = sents[k]}
table.insert(predictions, entry)
if verbose then
print(string.format('image %s: %s', entry.image_id, entry.caption))
end
end
-- if we wrapped around the split or used up val imgs budget then bail
local ix0 = data.bounds.it_pos_now
local ix1 = math.min(data.bounds.it_max, val_images_use)
if verbose then
print(string.format('evaluating validation performance... %d/%d (%f)', ix0-1, ix1, loss))
end
if loss_evals % 10 == 0 then collectgarbage() end
if data.bounds.wrapped then break end -- the split ran out of data, lets break out
if n >= val_images_use then break end -- we've used enough images
end
local lang_stats
if opt.language_eval == 1 then
lang_stats = net_utils.language_eval(predictions, opt.id)
end
return loss_sum/loss_evals, predictions, lang_stats
end
-------------------------------------------------------------------------------
-- Loss function
-------------------------------------------------------------------------------
local iter = 0
local function lossFun()
protos.cnn:training()
protos.lm:training()
grad_params:zero()
if opt.finetune_cnn_after >= 0 and iter >= opt.finetune_cnn_after then
cnn_grad_params:zero()
end
-----------------------------------------------------------------------------
-- Forward pass
-----------------------------------------------------------------------------
-- get batch of data
local data = loader:getBatch{batch_size = opt.batch_size, split = 'train', seq_per_img = opt.seq_per_img}
data.images = net_utils.prepro(data.images, true, opt.gpuid >= 0) -- preprocess in place, do data augmentation
-- data.images: Nx3x224x224
-- data.seq: LxM where L is sequence length upper bound, and M = N*seq_per_img
-- expand the data.semantic_words: batch_size * 16(attribute words per image)
local exp_attrs = protos.expander:forward(data.semantic_words):clone()
-- forward the ConvNet on images (most work happens here)
local feats = protos.cnn:forward(data.images)
-- we have to expand out image features, once for each sentence
-- use protos.expander twice
local expanded_feats = protos.expander:forward(feats):clone()
-- forward the language model
-- input: expanded_feats, data.semantic_words
local logprobs = protos.lm:forward{expanded_feats, data.labels, exp_attrs}
-- forward the language model criterion
local loss = protos.crit:forward(logprobs, data.labels)
-----------------------------------------------------------------------------
-- Backward pass
-----------------------------------------------------------------------------
-- backprop criterion
local dlogprobs = protos.crit:backward(logprobs, data.labels)
-- backprop language model
local dexpanded_feats, ddummy, ddummy = unpack(protos.lm:backward({expanded_feats, data.labels, exp_attrs}, dlogprobs))
-- backprop the CNN, but only if we are finetuning
if opt.finetune_cnn_after >= 0 and iter >= opt.finetune_cnn_after then
local dfeats = protos.expander:backward(feats, dexpanded_feats)
local dx = protos.cnn:backward(data.images, dfeats)
end
-- clip gradients
-- print(string.format('claming %f%% of gradients', 100*torch.mean(torch.gt(torch.abs(grad_params), opt.grad_clip))))
grad_params:clamp(-opt.grad_clip, opt.grad_clip)
-- apply L2 regularization
if opt.cnn_weight_decay > 0 then
cnn_grad_params:add(opt.cnn_weight_decay, cnn_params)
-- note: we don't bother adding the l2 loss to the total loss, meh.
cnn_grad_params:clamp(-opt.grad_clip, opt.grad_clip)
end
-----------------------------------------------------------------------------
-- and lets get out!
local losses = { total_loss = loss }
return losses
end
-------------------------------------------------------------------------------
-- Main loop
-------------------------------------------------------------------------------
local loss0
local optim_state = {}
local cnn_optim_state = {}
local loss_history = {}
local val_lang_stats_history = {}
local val_loss_history = {}
local best_score
-- loading save optimization state to restore training from last training
if string.len(opt.start_from) > 0 and string.len(opt.optim_state_from) > 0 then
optim_state_from = torch.load(opt.optim_state_from)
optim_state = optim_state_from.optim_state
cnn_optim_state = optim_state_from.cnn_optim_state
-- restore next train data iterators
loader.iterators['train'] = optim_state_from.next_id
end
--[[
isDebug = false
if isDebug then
-- do nothing
else
--]]
while true do
-- eval loss/gradient
local losses = lossFun()
if iter % opt.losses_log_every == 0 then loss_history[iter] = losses.total_loss end
print(string.format('iter %d: %f', iter, losses.total_loss))
-- save checkpoint once in a while (or on final iteration)
if (iter % opt.save_checkpoint_every == 0 or iter == opt.max_iters) then
-- evaluate the validation performance
local val_loss, val_predictions, lang_stats = eval_split('val', {val_images_use = opt.val_images_use})
print('validation loss: ', val_loss)
print(lang_stats)
val_loss_history[iter] = val_loss
if lang_stats then
val_lang_stats_history[iter] = lang_stats
end
local checkpoint_path = path.join(opt.checkpoint_path, 'model_id' .. opt.id)
-- write a (thin) json report
local checkpoint = {}
checkpoint.opt = opt
checkpoint.iter = iter
checkpoint.loss_history = loss_history
checkpoint.val_loss_history = val_loss_history
checkpoint.val_predictions = val_predictions -- save these too for CIDEr/METEOR/etc eval
checkpoint.val_lang_stats_history = val_lang_stats_history
utils.write_json(checkpoint_path .. '.json', checkpoint)
print('wrote json checkpoint to ' .. checkpoint_path .. '.json')
-- write the full model checkpoint as well if we did better than ever
local current_score
if lang_stats then
-- use CIDEr score for deciding how well we did
current_score = lang_stats['CIDEr']
else
-- use the (negative) validation loss as a score
current_score = -val_loss
end
if best_score == nil or current_score > best_score then
best_score = current_score
if iter > 0 then -- dont save on very first iteration
-- include the protos (which have weights) and save to file
local save_protos = {}
save_protos.lm = thin_lm -- these are shared clones, and point to correct param storage
save_protos.cnn = thin_cnn
checkpoint.protos = save_protos
-- also include the vocabulary mapping so that we can use the checkpoint
-- alone to run on arbitrary images without the data loader
checkpoint.vocab = loader:getVocab()
torch.save(checkpoint_path .. '.t7', checkpoint)
print('wrote checkpoint to ' .. checkpoint_path .. '.t7')
-- storing optimization state(cnn_optim_state and optim_state) so that we can restore it
if opt.save_optim_state then
local optim_checkpoint_path = path.join(opt.checkpoint_path, 'optim_id' .. opt.id)
local optim_checkpoint = {}
optim_checkpoint.cnn_optim_state = cnn_optim_state
optim_checkpoint.optim_state = optim_state
-- storing next index in training data
optim_checkpoint.next_id = loader.iterators['train']
torch.save(optim_checkpoint_path .. '.t7', optim_checkpoint)
print('wrote checkpoint to ' .. optim_checkpoint_path .. '.t7')
end
end
end
-- storing optimization state(cnn_optim_state and optim_state) so that we can restore it
if opt.save_optim_state then
local optim_checkpoint_path = path.join(opt.checkpoint_path, 'optim_id_latest' .. opt.id)
local optim_checkpoint = {}
optim_checkpoint.cnn_optim_state = cnn_optim_state
optim_checkpoint.optim_state = optim_state
-- storing next index in training data
optim_checkpoint.next_id = loader.iterators['train']
torch.save(optim_checkpoint_path .. '.t7', optim_checkpoint)
print('wrote checkpoint to ' .. optim_checkpoint_path .. '.t7')
end
end
-- decay the learning rate for both LM and CNN
local learning_rate = opt.learning_rate
local cnn_learning_rate = opt.cnn_learning_rate
--[[
if iter > opt.learning_rate_decay_start and opt.learning_rate_decay_start >= 0 then
local frac = (iter - opt.learning_rate_decay_start) / opt.learning_rate_decay_every
local decay_factor = math.pow(0.1, frac)
learning_rate = learning_rate * decay_factor -- set the decayed rate
cnn_learning_rate = cnn_learning_rate * decay_factor
end
--]]
--[[
-- currently only training lm model
if iter < 12000 then
learning_rate = 0.01
elseif iter < 20000 then
learning_rate = 0.01
else
learning_rate = 0.001
end
--]]
-- perform a parameter update
if opt.optim == 'rmsprop' then
rmsprop(params, grad_params, learning_rate, opt.optim_alpha, opt.optim_epsilon, optim_state)
elseif opt.optim == 'adagrad' then
adagrad(params, grad_params, learning_rate, opt.optim_epsilon, optim_state)
elseif opt.optim == 'sgd' then
sgd(params, grad_params, opt.learning_rate)
elseif opt.optim == 'sgdm' then
sgdm(params, grad_params, learning_rate, opt.optim_alpha, optim_state)
elseif opt.optim == 'sgdmom' then
sgdmom(params, grad_params, learning_rate, opt.optim_alpha, optim_state)
elseif opt.optim == 'adam' then
adam(params, grad_params, learning_rate, opt.optim_alpha, opt.optim_beta, opt.optim_epsilon, optim_state)
else
error('bad option opt.optim')
end
-- do a cnn update (if finetuning, and if rnn above us is not warming up right now)
if opt.finetune_cnn_after >= 0 and iter >= opt.finetune_cnn_after then
if opt.cnn_optim == 'sgd' then
sgd(cnn_params, cnn_grad_params, cnn_learning_rate)
elseif opt.cnn_optim == 'sgdm' then
sgdm(cnn_params, cnn_grad_params, cnn_learning_rate, opt.cnn_optim_alpha, cnn_optim_state)
elseif opt.cnn_optim == 'adam' then
adam(cnn_params, cnn_grad_params, cnn_learning_rate, opt.cnn_optim_alpha, opt.cnn_optim_beta, opt.optim_epsilon, cnn_optim_state)
else
error('bad option for opt.cnn_optim')
end
end
-- stopping criterions
iter = iter + 1
if iter % 10 == 0 then collectgarbage() end -- good idea to do this once in a while, i think
if loss0 == nil then loss0 = losses.total_loss end
if losses.total_loss > loss0 * 20 then
print('loss seems to be exploding, quitting.')
break
end
if opt.max_iters > 0 and iter >= opt.max_iters then break end -- stopping criterion
end
--[[
end
--]]