forked from ilivans/tf-rnn-attention
-
Notifications
You must be signed in to change notification settings - Fork 0
/
attention.py
80 lines (68 loc) · 4.01 KB
/
attention.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import tensorflow as tf
def attention(inputs, attention_size, time_major=False, return_alphas=False):
"""
Attention mechanism layer which reduces RNN/Bi-RNN outputs with Attention vector.
The idea was proposed in the article by Z. Yang et al., "Hierarchical Attention Networks
for Document Classification", 2016: http://www.aclweb.org/anthology/N16-1174.
Variables notation is also inherited from the article
Args:
inputs: The Attention inputs.
Matches outputs of RNN/Bi-RNN layer (not final state):
In case of RNN, this must be RNN outputs `Tensor`:
If time_major == False (default), this must be a tensor of shape:
`[batch_size, max_time, cell.output_size]`.
If time_major == True, this must be a tensor of shape:
`[max_time, batch_size, cell.output_size]`.
In case of Bidirectional RNN, this must be a tuple (outputs_fw, outputs_bw) containing the forward and
the backward RNN outputs `Tensor`.
If time_major == False (default),
outputs_fw is a `Tensor` shaped:
`[batch_size, max_time, cell_fw.output_size]`
and outputs_bw is a `Tensor` shaped:
`[batch_size, max_time, cell_bw.output_size]`.
If time_major == True,
outputs_fw is a `Tensor` shaped:
`[max_time, batch_size, cell_fw.output_size]`
and outputs_bw is a `Tensor` shaped:
`[max_time, batch_size, cell_bw.output_size]`.
attention_size: Linear size of the Attention weights.
time_major: The shape format of the `inputs` Tensors.
If true, these `Tensors` must be shaped `[max_time, batch_size, depth]`.
If false, these `Tensors` must be shaped `[batch_size, max_time, depth]`.
Using `time_major = True` is a bit more efficient because it avoids
transposes at the beginning and end of the RNN calculation. However,
most TensorFlow data is batch-major, so by default this function
accepts input and emits output in batch-major form.
return_alphas: Whether to return attention coefficients variable along with layer's output.
Used for visualization purpose.
Returns:
The Attention output `Tensor`.
In case of RNN, this will be a `Tensor` shaped:
`[batch_size, cell.output_size]`.
In case of Bidirectional RNN, this will be a `Tensor` shaped:
`[batch_size, cell_fw.output_size + cell_bw.output_size]`.
"""
if isinstance(inputs, tuple):
# In case of Bi-RNN, concatenate the forward and the backward RNN outputs.
inputs = tf.concat(inputs, 2)
if time_major:
# (T,B,D) => (B,T,D)
inputs = tf.array_ops.transpose(inputs, [1, 0, 2])
hidden_size = inputs.shape[2].value # D value - hidden size of the RNN layer
# Trainable parameters
w_omega = tf.Variable(tf.random_normal([hidden_size, attention_size], stddev=0.1))
b_omega = tf.Variable(tf.random_normal([attention_size], stddev=0.1))
u_omega = tf.Variable(tf.random_normal([attention_size], stddev=0.1))
with tf.name_scope('v'):
# Applying fully connected layer with non-linear activation to each of the B*T timestamps;
# the shape of `v` is (B,T,D)*(D,A)=(B,T,A), where A=attention_size
v = tf.tanh(tf.tensordot(inputs, w_omega, axes=1) + b_omega)
# For each of the timestamps its vector of size A from `v` is reduced with `u` vector
vu = tf.tensordot(v, u_omega, axes=1, name='vu') # (B,T) shape
alphas = tf.nn.softmax(vu, name='alphas') # (B,T) shape
# Output of (Bi-)RNN is reduced with attention vector; the result has (B,D) shape
output = tf.reduce_sum(inputs * tf.expand_dims(alphas, -1), 1)
if not return_alphas:
return output
else:
return output, alphas