forked from git/git
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathuser-manual.txt
4578 lines (3542 loc) · 169 KB
/
user-manual.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
= Git User Manual
Git is a fast distributed revision control system.
This manual is designed to be readable by someone with basic UNIX
command-line skills, but no previous knowledge of Git.
<<repositories-and-branches>> and <<exploring-git-history>> explain how
to fetch and study a project using git--read these chapters to learn how
to build and test a particular version of a software project, search for
regressions, and so on.
People needing to do actual development will also want to read
<<Developing-With-git>> and <<sharing-development>>.
Further chapters cover more specialized topics.
Comprehensive reference documentation is available through the man
pages, or linkgit:git-help[1] command. For example, for the command
`git clone <repo>`, you can either use:
------------------------------------------------
$ man git-clone
------------------------------------------------
or:
------------------------------------------------
$ git help clone
------------------------------------------------
With the latter, you can use the manual viewer of your choice; see
linkgit:git-help[1] for more information.
See also <<git-quick-start>> for a brief overview of Git commands,
without any explanation.
Finally, see <<todo>> for ways that you can help make this manual more
complete.
[[repositories-and-branches]]
== Repositories and Branches
[[how-to-get-a-git-repository]]
=== How to get a Git repository
It will be useful to have a Git repository to experiment with as you
read this manual.
The best way to get one is by using the linkgit:git-clone[1] command to
download a copy of an existing repository. If you don't already have a
project in mind, here are some interesting examples:
------------------------------------------------
# Git itself (approx. 40MB download):
$ git clone git://git.kernel.org/pub/scm/git/git.git
# the Linux kernel (approx. 640MB download):
$ git clone git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
------------------------------------------------
The initial clone may be time-consuming for a large project, but you
will only need to clone once.
The clone command creates a new directory named after the project
(`git` or `linux` in the examples above). After you cd into this
directory, you will see that it contains a copy of the project files,
called the <<def_working_tree,working tree>>, together with a special
top-level directory named `.git`, which contains all the information
about the history of the project.
[[how-to-check-out]]
=== How to check out a different version of a project
Git is best thought of as a tool for storing the history of a collection
of files. It stores the history as a compressed collection of
interrelated snapshots of the project's contents. In Git each such
version is called a <<def_commit,commit>>.
Those snapshots aren't necessarily all arranged in a single line from
oldest to newest; instead, work may simultaneously proceed along
parallel lines of development, called <<def_branch,branches>>, which may
merge and diverge.
A single Git repository can track development on multiple branches. It
does this by keeping a list of <<def_head,heads>> which reference the
latest commit on each branch; the linkgit:git-branch[1] command shows
you the list of branch heads:
------------------------------------------------
$ git branch
* master
------------------------------------------------
A freshly cloned repository contains a single branch head, by default
named "master", with the working directory initialized to the state of
the project referred to by that branch head.
Most projects also use <<def_tag,tags>>. Tags, like heads, are
references into the project's history, and can be listed using the
linkgit:git-tag[1] command:
------------------------------------------------
$ git tag -l
v2.6.11
v2.6.11-tree
v2.6.12
v2.6.12-rc2
v2.6.12-rc3
v2.6.12-rc4
v2.6.12-rc5
v2.6.12-rc6
v2.6.13
...
------------------------------------------------
Tags are expected to always point at the same version of a project,
while heads are expected to advance as development progresses.
Create a new branch head pointing to one of these versions and check it
out using linkgit:git-switch[1]:
------------------------------------------------
$ git switch -c new v2.6.13
------------------------------------------------
The working directory then reflects the contents that the project had
when it was tagged v2.6.13, and linkgit:git-branch[1] shows two
branches, with an asterisk marking the currently checked-out branch:
------------------------------------------------
$ git branch
master
* new
------------------------------------------------
If you decide that you'd rather see version 2.6.17, you can modify
the current branch to point at v2.6.17 instead, with
------------------------------------------------
$ git reset --hard v2.6.17
------------------------------------------------
Note that if the current branch head was your only reference to a
particular point in history, then resetting that branch may leave you
with no way to find the history it used to point to; so use this command
carefully.
[[understanding-commits]]
=== Understanding History: Commits
Every change in the history of a project is represented by a commit.
The linkgit:git-show[1] command shows the most recent commit on the
current branch:
------------------------------------------------
$ git show
commit 17cf781661e6d38f737f15f53ab552f1e95960d7
Author: Linus Torvalds <[email protected].(none)>
Date: Tue Apr 19 14:11:06 2005 -0700
Remove duplicate getenv(DB_ENVIRONMENT) call
Noted by Tony Luck.
diff --git a/init-db.c b/init-db.c
index 65898fa..b002dc6 100644
--- a/init-db.c
+++ b/init-db.c
@@ -7,7 +7,7 @@
int main(int argc, char **argv)
{
- char *sha1_dir = getenv(DB_ENVIRONMENT), *path;
+ char *sha1_dir, *path;
int len, i;
if (mkdir(".git", 0755) < 0) {
------------------------------------------------
As you can see, a commit shows who made the latest change, what they
did, and why.
Every commit has a 40-hexdigit id, sometimes called the "object name" or the
"SHA-1 id", shown on the first line of the `git show` output. You can usually
refer to a commit by a shorter name, such as a tag or a branch name, but this
longer name can also be useful. Most importantly, it is a globally unique
name for this commit: so if you tell somebody else the object name (for
example in email), then you are guaranteed that name will refer to the same
commit in their repository that it does in yours (assuming their repository
has that commit at all). Since the object name is computed as a hash over the
contents of the commit, you are guaranteed that the commit can never change
without its name also changing.
In fact, in <<git-concepts>> we shall see that everything stored in Git
history, including file data and directory contents, is stored in an object
with a name that is a hash of its contents.
[[understanding-reachability]]
==== Understanding history: commits, parents, and reachability
Every commit (except the very first commit in a project) also has a
parent commit which shows what happened before this commit.
Following the chain of parents will eventually take you back to the
beginning of the project.
However, the commits do not form a simple list; Git allows lines of
development to diverge and then reconverge, and the point where two
lines of development reconverge is called a "merge". The commit
representing a merge can therefore have more than one parent, with
each parent representing the most recent commit on one of the lines
of development leading to that point.
The best way to see how this works is using the linkgit:gitk[1]
command; running gitk now on a Git repository and looking for merge
commits will help understand how Git organizes history.
In the following, we say that commit X is "reachable" from commit Y
if commit X is an ancestor of commit Y. Equivalently, you could say
that Y is a descendant of X, or that there is a chain of parents
leading from commit Y to commit X.
[[history-diagrams]]
==== Understanding history: History diagrams
We will sometimes represent Git history using diagrams like the one
below. Commits are shown as "o", and the links between them with
lines drawn with - / and \. Time goes left to right:
................................................
o--o--o <-- Branch A
/
o--o--o <-- master
\
o--o--o <-- Branch B
................................................
If we need to talk about a particular commit, the character "o" may
be replaced with another letter or number.
[[what-is-a-branch]]
==== Understanding history: What is a branch?
When we need to be precise, we will use the word "branch" to mean a line
of development, and "branch head" (or just "head") to mean a reference
to the most recent commit on a branch. In the example above, the branch
head named "A" is a pointer to one particular commit, but we refer to
the line of three commits leading up to that point as all being part of
"branch A".
However, when no confusion will result, we often just use the term
"branch" both for branches and for branch heads.
[[manipulating-branches]]
=== Manipulating branches
Creating, deleting, and modifying branches is quick and easy; here's
a summary of the commands:
`git branch`::
list all branches.
`git branch <branch>`::
create a new branch named `<branch>`, referencing the same
point in history as the current branch.
`git branch <branch> <start-point>`::
create a new branch named `<branch>`, referencing
`<start-point>`, which may be specified any way you like,
including using a branch name or a tag name.
`git branch -d <branch>`::
delete the branch `<branch>`; if the branch is not fully
merged in its upstream branch or contained in the current branch,
this command will fail with a warning.
`git branch -D <branch>`::
delete the branch `<branch>` irrespective of its merged status.
`git switch <branch>`::
make the current branch `<branch>`, updating the working
directory to reflect the version referenced by `<branch>`.
`git switch -c <new> <start-point>`::
create a new branch `<new>` referencing `<start-point>`, and
check it out.
The special symbol "HEAD" can always be used to refer to the current
branch. In fact, Git uses a file named `HEAD` in the `.git` directory
to remember which branch is current:
------------------------------------------------
$ cat .git/HEAD
ref: refs/heads/master
------------------------------------------------
[[detached-head]]
=== Examining an old version without creating a new branch
The `git switch` command normally expects a branch head, but will also
accept an arbitrary commit when invoked with --detach; for example,
you can check out the commit referenced by a tag:
------------------------------------------------
$ git switch --detach v2.6.17
Note: checking out 'v2.6.17'.
You are in 'detached HEAD' state. You can look around, make experimental
changes and commit them, and you can discard any commits you make in this
state without impacting any branches by performing another switch.
If you want to create a new branch to retain commits you create, you may
do so (now or later) by using -c with the switch command again. Example:
git switch -c new_branch_name
HEAD is now at 427abfa Linux v2.6.17
------------------------------------------------
The HEAD then refers to the SHA-1 of the commit instead of to a branch,
and git branch shows that you are no longer on a branch:
------------------------------------------------
$ cat .git/HEAD
427abfa28afedffadfca9dd8b067eb6d36bac53f
$ git branch
* (detached from v2.6.17)
master
------------------------------------------------
In this case we say that the HEAD is "detached".
This is an easy way to check out a particular version without having to
make up a name for the new branch. You can still create a new branch
(or tag) for this version later if you decide to.
[[examining-remote-branches]]
=== Examining branches from a remote repository
The "master" branch that was created at the time you cloned is a copy
of the HEAD in the repository that you cloned from. That repository
may also have had other branches, though, and your local repository
keeps branches which track each of those remote branches, called
remote-tracking branches, which you
can view using the `-r` option to linkgit:git-branch[1]:
------------------------------------------------
$ git branch -r
origin/HEAD
origin/html
origin/maint
origin/man
origin/master
origin/next
origin/seen
origin/todo
------------------------------------------------
In this example, "origin" is called a remote repository, or "remote"
for short. The branches of this repository are called "remote
branches" from our point of view. The remote-tracking branches listed
above were created based on the remote branches at clone time and will
be updated by `git fetch` (hence `git pull`) and `git push`. See
<<Updating-a-repository-With-git-fetch>> for details.
You might want to build on one of these remote-tracking branches
on a branch of your own, just as you would for a tag:
------------------------------------------------
$ git switch -c my-todo-copy origin/todo
------------------------------------------------
You can also check out `origin/todo` directly to examine it or
write a one-off patch. See <<detached-head,detached head>>.
Note that the name "origin" is just the name that Git uses by default
to refer to the repository that you cloned from.
[[how-git-stores-references]]
=== Naming branches, tags, and other references
Branches, remote-tracking branches, and tags are all references to
commits. All references are named with a slash-separated path name
starting with `refs`; the names we've been using so far are actually
shorthand:
- The branch `test` is short for `refs/heads/test`.
- The tag `v2.6.18` is short for `refs/tags/v2.6.18`.
- `origin/master` is short for `refs/remotes/origin/master`.
The full name is occasionally useful if, for example, there ever
exists a tag and a branch with the same name.
(Newly created refs are actually stored in the `.git/refs` directory,
under the path given by their name. However, for efficiency reasons
they may also be packed together in a single file; see
linkgit:git-pack-refs[1]).
As another useful shortcut, the "HEAD" of a repository can be referred
to just using the name of that repository. So, for example, "origin"
is usually a shortcut for the HEAD branch in the repository "origin".
For the complete list of paths which Git checks for references, and
the order it uses to decide which to choose when there are multiple
references with the same shorthand name, see the "SPECIFYING
REVISIONS" section of linkgit:gitrevisions[7].
[[Updating-a-repository-With-git-fetch]]
=== Updating a repository with git fetch
After you clone a repository and commit a few changes of your own, you
may wish to check the original repository for updates.
The `git-fetch` command, with no arguments, will update all of the
remote-tracking branches to the latest version found in the original
repository. It will not touch any of your own branches--not even the
"master" branch that was created for you on clone.
[[fetching-branches]]
=== Fetching branches from other repositories
You can also track branches from repositories other than the one you
cloned from, using linkgit:git-remote[1]:
-------------------------------------------------
$ git remote add staging git://git.kernel.org/.../gregkh/staging.git
$ git fetch staging
...
From git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/staging
* [new branch] master -> staging/master
* [new branch] staging-linus -> staging/staging-linus
* [new branch] staging-next -> staging/staging-next
-------------------------------------------------
New remote-tracking branches will be stored under the shorthand name
that you gave `git remote add`, in this case `staging`:
-------------------------------------------------
$ git branch -r
origin/HEAD -> origin/master
origin/master
staging/master
staging/staging-linus
staging/staging-next
-------------------------------------------------
If you run `git fetch <remote>` later, the remote-tracking branches
for the named `<remote>` will be updated.
If you examine the file `.git/config`, you will see that Git has added
a new stanza:
-------------------------------------------------
$ cat .git/config
...
[remote "staging"]
url = git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/staging.git
fetch = +refs/heads/*:refs/remotes/staging/*
...
-------------------------------------------------
This is what causes Git to track the remote's branches; you may modify
or delete these configuration options by editing `.git/config` with a
text editor. (See the "CONFIGURATION FILE" section of
linkgit:git-config[1] for details.)
[[exploring-git-history]]
== Exploring Git history
Git is best thought of as a tool for storing the history of a
collection of files. It does this by storing compressed snapshots of
the contents of a file hierarchy, together with "commits" which show
the relationships between these snapshots.
Git provides extremely flexible and fast tools for exploring the
history of a project.
We start with one specialized tool that is useful for finding the
commit that introduced a bug into a project.
[[using-bisect]]
=== How to use bisect to find a regression
Suppose version 2.6.18 of your project worked, but the version at
"master" crashes. Sometimes the best way to find the cause of such a
regression is to perform a brute-force search through the project's
history to find the particular commit that caused the problem. The
linkgit:git-bisect[1] command can help you do this:
-------------------------------------------------
$ git bisect start
$ git bisect good v2.6.18
$ git bisect bad master
Bisecting: 3537 revisions left to test after this
[65934a9a028b88e83e2b0f8b36618fe503349f8e] BLOCK: Make USB storage depend on SCSI rather than selecting it [try #6]
-------------------------------------------------
If you run `git branch` at this point, you'll see that Git has
temporarily moved you in "(no branch)". HEAD is now detached from any
branch and points directly to a commit (with commit id 65934) that
is reachable from "master" but not from v2.6.18. Compile and test it,
and see whether it crashes. Assume it does crash. Then:
-------------------------------------------------
$ git bisect bad
Bisecting: 1769 revisions left to test after this
[7eff82c8b1511017ae605f0c99ac275a7e21b867] i2c-core: Drop useless bitmaskings
-------------------------------------------------
checks out an older version. Continue like this, telling Git at each
stage whether the version it gives you is good or bad, and notice
that the number of revisions left to test is cut approximately in
half each time.
After about 13 tests (in this case), it will output the commit id of
the guilty commit. You can then examine the commit with
linkgit:git-show[1], find out who wrote it, and mail them your bug
report with the commit id. Finally, run
-------------------------------------------------
$ git bisect reset
-------------------------------------------------
to return you to the branch you were on before.
Note that the version which `git bisect` checks out for you at each
point is just a suggestion, and you're free to try a different
version if you think it would be a good idea. For example,
occasionally you may land on a commit that broke something unrelated;
run
-------------------------------------------------
$ git bisect visualize
-------------------------------------------------
which will run gitk and label the commit it chose with a marker that
says "bisect". Choose a safe-looking commit nearby, note its commit
id, and check it out with:
-------------------------------------------------
$ git reset --hard fb47ddb2db
-------------------------------------------------
then test, run `bisect good` or `bisect bad` as appropriate, and
continue.
Instead of `git bisect visualize` and then `git reset --hard
fb47ddb2db`, you might just want to tell Git that you want to skip
the current commit:
-------------------------------------------------
$ git bisect skip
-------------------------------------------------
In this case, though, Git may not eventually be able to tell the first
bad one between some first skipped commits and a later bad commit.
There are also ways to automate the bisecting process if you have a
test script that can tell a good from a bad commit. See
linkgit:git-bisect[1] for more information about this and other `git
bisect` features.
[[naming-commits]]
=== Naming commits
We have seen several ways of naming commits already:
- 40-hexdigit object name
- branch name: refers to the commit at the head of the given
branch
- tag name: refers to the commit pointed to by the given tag
(we've seen branches and tags are special cases of
<<how-git-stores-references,references>>).
- HEAD: refers to the head of the current branch
There are many more; see the "SPECIFYING REVISIONS" section of the
linkgit:gitrevisions[7] man page for the complete list of ways to
name revisions. Some examples:
-------------------------------------------------
$ git show fb47ddb2 # the first few characters of the object name
# are usually enough to specify it uniquely
$ git show HEAD^ # the parent of the HEAD commit
$ git show HEAD^^ # the grandparent
$ git show HEAD~4 # the great-great-grandparent
-------------------------------------------------
Recall that merge commits may have more than one parent; by default,
`^` and `~` follow the first parent listed in the commit, but you can
also choose:
-------------------------------------------------
$ git show HEAD^1 # show the first parent of HEAD
$ git show HEAD^2 # show the second parent of HEAD
-------------------------------------------------
In addition to HEAD, there are several other special names for
commits:
Merges (to be discussed later), as well as operations such as
`git reset`, which change the currently checked-out commit, generally
set ORIG_HEAD to the value HEAD had before the current operation.
The `git fetch` operation always stores the head of the last fetched
branch in FETCH_HEAD. For example, if you run `git fetch` without
specifying a local branch as the target of the operation
-------------------------------------------------
$ git fetch git://example.com/proj.git theirbranch
-------------------------------------------------
the fetched commits will still be available from FETCH_HEAD.
When we discuss merges we'll also see the special name MERGE_HEAD,
which refers to the other branch that we're merging in to the current
branch.
The linkgit:git-rev-parse[1] command is a low-level command that is
occasionally useful for translating some name for a commit to the object
name for that commit:
-------------------------------------------------
$ git rev-parse origin
e05db0fd4f31dde7005f075a84f96b360d05984b
-------------------------------------------------
[[creating-tags]]
=== Creating tags
We can also create a tag to refer to a particular commit; after
running
-------------------------------------------------
$ git tag stable-1 1b2e1d63ff
-------------------------------------------------
You can use `stable-1` to refer to the commit 1b2e1d63ff.
This creates a "lightweight" tag. If you would also like to include a
comment with the tag, and possibly sign it cryptographically, then you
should create a tag object instead; see the linkgit:git-tag[1] man page
for details.
[[browsing-revisions]]
=== Browsing revisions
The linkgit:git-log[1] command can show lists of commits. On its
own, it shows all commits reachable from the parent commit; but you
can also make more specific requests:
-------------------------------------------------
$ git log v2.5.. # commits since (not reachable from) v2.5
$ git log test..master # commits reachable from master but not test
$ git log master..test # ...reachable from test but not master
$ git log master...test # ...reachable from either test or master,
# but not both
$ git log --since="2 weeks ago" # commits from the last 2 weeks
$ git log Makefile # commits which modify Makefile
$ git log fs/ # ... which modify any file under fs/
$ git log -S'foo()' # commits which add or remove any file data
# matching the string 'foo()'
-------------------------------------------------
And of course you can combine all of these; the following finds
commits since v2.5 which touch the `Makefile` or any file under `fs`:
-------------------------------------------------
$ git log v2.5.. Makefile fs/
-------------------------------------------------
You can also ask git log to show patches:
-------------------------------------------------
$ git log -p
-------------------------------------------------
See the `--pretty` option in the linkgit:git-log[1] man page for more
display options.
Note that git log starts with the most recent commit and works
backwards through the parents; however, since Git history can contain
multiple independent lines of development, the particular order that
commits are listed in may be somewhat arbitrary.
[[generating-diffs]]
=== Generating diffs
You can generate diffs between any two versions using
linkgit:git-diff[1]:
-------------------------------------------------
$ git diff master..test
-------------------------------------------------
That will produce the diff between the tips of the two branches. If
you'd prefer to find the diff from their common ancestor to test, you
can use three dots instead of two:
-------------------------------------------------
$ git diff master...test
-------------------------------------------------
Sometimes what you want instead is a set of patches; for this you can
use linkgit:git-format-patch[1]:
-------------------------------------------------
$ git format-patch master..test
-------------------------------------------------
will generate a file with a patch for each commit reachable from test
but not from master.
[[viewing-old-file-versions]]
=== Viewing old file versions
You can always view an old version of a file by just checking out the
correct revision first. But sometimes it is more convenient to be
able to view an old version of a single file without checking
anything out; this command does that:
-------------------------------------------------
$ git show v2.5:fs/locks.c
-------------------------------------------------
Before the colon may be anything that names a commit, and after it
may be any path to a file tracked by Git.
[[history-examples]]
=== Examples
[[counting-commits-on-a-branch]]
==== Counting the number of commits on a branch
Suppose you want to know how many commits you've made on `mybranch`
since it diverged from `origin`:
-------------------------------------------------
$ git log --pretty=oneline origin..mybranch | wc -l
-------------------------------------------------
Alternatively, you may often see this sort of thing done with the
lower-level command linkgit:git-rev-list[1], which just lists the SHA-1's
of all the given commits:
-------------------------------------------------
$ git rev-list origin..mybranch | wc -l
-------------------------------------------------
[[checking-for-equal-branches]]
==== Check whether two branches point at the same history
Suppose you want to check whether two branches point at the same point
in history.
-------------------------------------------------
$ git diff origin..master
-------------------------------------------------
will tell you whether the contents of the project are the same at the
two branches; in theory, however, it's possible that the same project
contents could have been arrived at by two different historical
routes. You could compare the object names:
-------------------------------------------------
$ git rev-list origin
e05db0fd4f31dde7005f075a84f96b360d05984b
$ git rev-list master
e05db0fd4f31dde7005f075a84f96b360d05984b
-------------------------------------------------
Or you could recall that the `...` operator selects all commits
reachable from either one reference or the other but not
both; so
-------------------------------------------------
$ git log origin...master
-------------------------------------------------
will return no commits when the two branches are equal.
[[finding-tagged-descendants]]
==== Find first tagged version including a given fix
Suppose you know that the commit e05db0fd fixed a certain problem.
You'd like to find the earliest tagged release that contains that
fix.
Of course, there may be more than one answer--if the history branched
after commit e05db0fd, then there could be multiple "earliest" tagged
releases.
You could just visually inspect the commits since e05db0fd:
-------------------------------------------------
$ gitk e05db0fd..
-------------------------------------------------
or you can use linkgit:git-name-rev[1], which will give the commit a
name based on any tag it finds pointing to one of the commit's
descendants:
-------------------------------------------------
$ git name-rev --tags e05db0fd
e05db0fd tags/v1.5.0-rc1^0~23
-------------------------------------------------
The linkgit:git-describe[1] command does the opposite, naming the
revision using a tag on which the given commit is based:
-------------------------------------------------
$ git describe e05db0fd
v1.5.0-rc0-260-ge05db0f
-------------------------------------------------
but that may sometimes help you guess which tags might come after the
given commit.
If you just want to verify whether a given tagged version contains a
given commit, you could use linkgit:git-merge-base[1]:
-------------------------------------------------
$ git merge-base e05db0fd v1.5.0-rc1
e05db0fd4f31dde7005f075a84f96b360d05984b
-------------------------------------------------
The merge-base command finds a common ancestor of the given commits,
and always returns one or the other in the case where one is a
descendant of the other; so the above output shows that e05db0fd
actually is an ancestor of v1.5.0-rc1.
Alternatively, note that
-------------------------------------------------
$ git log v1.5.0-rc1..e05db0fd
-------------------------------------------------
will produce empty output if and only if v1.5.0-rc1 includes e05db0fd,
because it outputs only commits that are not reachable from v1.5.0-rc1.
As yet another alternative, the linkgit:git-show-branch[1] command lists
the commits reachable from its arguments with a display on the left-hand
side that indicates which arguments that commit is reachable from.
So, if you run something like
-------------------------------------------------
$ git show-branch e05db0fd v1.5.0-rc0 v1.5.0-rc1 v1.5.0-rc2
! [e05db0fd] Fix warnings in sha1_file.c - use C99 printf format if
available
! [v1.5.0-rc0] GIT v1.5.0 preview
! [v1.5.0-rc1] GIT v1.5.0-rc1
! [v1.5.0-rc2] GIT v1.5.0-rc2
...
-------------------------------------------------
then a line like
-------------------------------------------------
+ ++ [e05db0fd] Fix warnings in sha1_file.c - use C99 printf format if
available
-------------------------------------------------
shows that e05db0fd is reachable from itself, from v1.5.0-rc1,
and from v1.5.0-rc2, and not from v1.5.0-rc0.
[[showing-commits-unique-to-a-branch]]
==== Showing commits unique to a given branch
Suppose you would like to see all the commits reachable from the branch
head named `master` but not from any other head in your repository.
We can list all the heads in this repository with
linkgit:git-show-ref[1]:
-------------------------------------------------
$ git show-ref --heads
bf62196b5e363d73353a9dcf094c59595f3153b7 refs/heads/core-tutorial
db768d5504c1bb46f63ee9d6e1772bd047e05bf9 refs/heads/maint
a07157ac624b2524a059a3414e99f6f44bebc1e7 refs/heads/master
24dbc180ea14dc1aebe09f14c8ecf32010690627 refs/heads/tutorial-2
1e87486ae06626c2f31eaa63d26fc0fd646c8af2 refs/heads/tutorial-fixes
-------------------------------------------------
We can get just the branch-head names, and remove `master`, with
the help of the standard utilities cut and grep:
-------------------------------------------------
$ git show-ref --heads | cut -d' ' -f2 | grep -v '^refs/heads/master'
refs/heads/core-tutorial
refs/heads/maint
refs/heads/tutorial-2
refs/heads/tutorial-fixes
-------------------------------------------------
And then we can ask to see all the commits reachable from master
but not from these other heads:
-------------------------------------------------
$ gitk master --not $( git show-ref --heads | cut -d' ' -f2 |
grep -v '^refs/heads/master' )
-------------------------------------------------
Obviously, endless variations are possible; for example, to see all
commits reachable from some head but not from any tag in the repository:
-------------------------------------------------
$ gitk $( git show-ref --heads ) --not $( git show-ref --tags )
-------------------------------------------------
(See linkgit:gitrevisions[7] for explanations of commit-selecting
syntax such as `--not`.)
[[making-a-release]]
==== Creating a changelog and tarball for a software release
The linkgit:git-archive[1] command can create a tar or zip archive from
any version of a project; for example:
-------------------------------------------------
$ git archive -o latest.tar.gz --prefix=project/ HEAD
-------------------------------------------------
will use HEAD to produce a gzipped tar archive in which each filename
is preceded by `project/`. The output file format is inferred from
the output file extension if possible, see linkgit:git-archive[1] for
details.
Versions of Git older than 1.7.7 don't know about the `tar.gz` format,
you'll need to use gzip explicitly:
-------------------------------------------------
$ git archive --format=tar --prefix=project/ HEAD | gzip >latest.tar.gz
-------------------------------------------------
If you're releasing a new version of a software project, you may want
to simultaneously make a changelog to include in the release
announcement.
Linus Torvalds, for example, makes new kernel releases by tagging them,
then running:
-------------------------------------------------
$ release-script 2.6.12 2.6.13-rc6 2.6.13-rc7
-------------------------------------------------
where release-script is a shell script that looks like:
-------------------------------------------------
#!/bin/sh
stable="$1"
last="$2"
new="$3"
echo "# git tag v$new"
echo "git archive --prefix=linux-$new/ v$new | gzip -9 > ../linux-$new.tar.gz"
echo "git diff v$stable v$new | gzip -9 > ../patch-$new.gz"
echo "git log --no-merges v$new ^v$last > ../ChangeLog-$new"
echo "git shortlog --no-merges v$new ^v$last > ../ShortLog"
echo "git diff --stat --summary -M v$last v$new > ../diffstat-$new"
-------------------------------------------------
and then he just cut-and-pastes the output commands after verifying that
they look OK.
[[Finding-commits-With-given-Content]]
==== Finding commits referencing a file with given content
Somebody hands you a copy of a file, and asks which commits modified a
file such that it contained the given content either before or after the
commit. You can find out with this:
-------------------------------------------------
$ git log --raw --abbrev=40 --pretty=oneline |
grep -B 1 `git hash-object filename`
-------------------------------------------------
Figuring out why this works is left as an exercise to the (advanced)
student. The linkgit:git-log[1], linkgit:git-diff-tree[1], and
linkgit:git-hash-object[1] man pages may prove helpful.
[[Developing-With-git]]
== Developing with Git
[[telling-git-your-name]]
=== Telling Git your name
Before creating any commits, you should introduce yourself to Git.
The easiest way to do so is to use linkgit:git-config[1]:
------------------------------------------------
$ git config --global user.name 'Your Name Comes Here'
$ git config --global user.email '[email protected]'
------------------------------------------------
Which will add the following to a file named `.gitconfig` in your
home directory:
------------------------------------------------
[user]
name = Your Name Comes Here
email = [email protected]
------------------------------------------------
See the "CONFIGURATION FILE" section of linkgit:git-config[1] for
details on the configuration file. The file is plain text, so you can
also edit it with your favorite editor.