forked from degauss-org/geocoder
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathentrypoint.R
executable file
·161 lines (141 loc) · 5.56 KB
/
entrypoint.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
#!/usr/local/bin/Rscript
dht::greeting()
withr::with_message_sink("/dev/null", library(dplyr))
withr::with_message_sink("/dev/null", library(digest))
withr::with_message_sink("/dev/null", library(knitr))
doc <- "
Usage:
entrypoint.R <filename> [<score_threshold>]
"
opt <- docopt::docopt(doc)
if (is.null(opt$score_threshold)) opt$score_threshold <- 0.5
d <- readr::read_csv(opt$filename, show_col_types = FALSE)
# d <- readr::read_csv('test/my_address_file.csv')
# d <- readr::read_csv('test/my_address_file_missing.csv')
## must contain character column called address
if (!"address" %in% names(d)) stop("no column called address found in the input file", call. = FALSE)
## clean up addresses / classify 'bad' addresses
d$address <- dht::clean_address(d$address)
d$po_box <- dht::address_is_po_box(d$address)
d$cincy_inst_foster_addr <- dht::address_is_institutional(d$address)
d$non_address_text <- dht::address_is_nonaddress(d$address)
## exclude 'bad' addresses from geocoding (unless specified to return all geocodes)
if (opt$score_threshold == "all") {
d_for_geocoding <- d
} else {
d_excluded_for_address <- dplyr::filter(d, cincy_inst_foster_addr | po_box | non_address_text)
d_for_geocoding <- dplyr::filter(d, !cincy_inst_foster_addr & !po_box & !non_address_text)
}
out_template <- tibble(
street = NA, zip = NA, city = NA, state = NA,
lat = NA, lon = NA, score = NA, precision = NA,
fips_county = NA, number = NA, prenum = NA
)
## geocode
cli::cli_alert_info("now geocoding ...", wrap = TRUE)
geocode <- function(addr_string) {
stopifnot(class(addr_string) == "character")
out <- system2("ruby",
args = c("/app/geocode.rb", shQuote(addr_string)),
stderr = FALSE, stdout = TRUE
)
if (length(out) > 0) {
out <- out %>%
jsonlite::fromJSON()
out <-
bind_rows(out_template, out) %>%
.[2, ]
} else {
out <- out_template
}
out
}
# if any geocodes are returned, regardless of score_threshold...
if (nrow(d_for_geocoding) > 0) {
d_for_geocoding$geocodes <- mappp::mappp(d_for_geocoding$address,
geocode,
parallel = TRUE,
cache = TRUE,
cache_name = "geocoding_cache"
)
## extract results, if a tie then take first returned result
d_for_geocoding <- d_for_geocoding %>%
dplyr::mutate(
row_index = 1:nrow(d_for_geocoding),
geocodes = purrr::map(geocodes, ~ .x %>%
purrr::map(unlist) %>%
as_tibble())
) %>%
tidyr::unnest(cols = c(geocodes)) %>%
dplyr::group_by(row_index) %>%
dplyr::slice(1) %>%
dplyr::ungroup() %>%
dplyr::rename(
matched_street = street,
matched_city = city,
matched_state = state,
matched_zip = zip
) %>%
dplyr::select(-fips_county, -prenum, -number, -row_index) %>%
dplyr::mutate(precision = factor(precision,
levels = c("range", "street", "intersection", "zip", "city"),
ordered = TRUE
)) %>%
dplyr::arrange(desc(precision), score)
} else if (nrow(d_for_geocoding) == 0 & opt$score_threshold != "all") {
# if no geocodes are returned and not returning all geocodes,
# then bind non-geocoded with out template
d_excluded_for_address <-
bind_rows(d_excluded_for_address, out_template) %>%
.[1:nrow(.) - 1, ]
}
## clean up 'bad' address columns / filter to precise geocodes
cli::cli_alert_info("geocoding complete; now filtering to precise geocodes...", wrap = TRUE)
if (opt$score_threshold == "all") {
out_file <- d_for_geocoding
} else {
out_file <- dplyr::bind_rows(d_excluded_for_address, d_for_geocoding) %>%
dplyr::mutate(
geocode_result = dplyr::case_when(
po_box ~ "po_box",
cincy_inst_foster_addr ~ "cincy_inst_foster_addr",
non_address_text ~ "non_address_text",
(!precision %in% c("street", "range")) | (score < opt$score_threshold) ~ "imprecise_geocode",
TRUE ~ "geocoded"
),
lat = ifelse(geocode_result == "imprecise_geocode", NA, lat),
lon = ifelse(geocode_result == "imprecise_geocode", NA, lon)
) %>%
select(-po_box, -cincy_inst_foster_addr, -non_address_text) # note, just "PO" not "PO BOX" is not flagged as "po_box"
}
## write out file
dht::write_geomarker_file(
out_file,
filename = opt$filename,
argument = glue::glue("score_threshold_{opt$score_threshold}")
)
## summarize geocoding results and
## print geocoding results summary to console
if (opt$score_threshold != "all") {
geocode_summary <- out_file %>%
mutate(geocode_result = factor(geocode_result,
levels = c(
"po_box", "cincy_inst_foster_addr", "non_address_text",
"imprecise_geocode", "geocoded"
),
ordered = TRUE
)) %>%
group_by(geocode_result) %>%
tally() %>%
mutate(
`%` = round(n / sum(n) * 100, 1),
`n (%)` = glue::glue("{n} ({`%`})")
)
n_geocoded <- geocode_summary$n[geocode_summary$geocode_result == "geocoded"]
n_total <- sum(geocode_summary$n)
pct_geocoded <- geocode_summary$`%`[geocode_summary$geocode_result == "geocoded"]
cli::cli_alert_info("{n_geocoded} of {n_total} ({pct_geocoded}%) addresses were successfully geocoded. See detailed summary below.",
wrap = TRUE
)
knitr::kable(geocode_summary %>% dplyr::select(geocode_result, `n (%)`))
}