-
Notifications
You must be signed in to change notification settings - Fork 41
/
Copy pathmain.cpp
122 lines (101 loc) · 3.52 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
/*
* DetectLabel.h
*
* Created on: May 1, 2014
* Author: chd
*/
#include <opencv2/opencv.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/ml.hpp>
#include <iostream>
#include <math.h>
#include <string.h>
#include <time.h>
#include "DetectLabel.h"
#include "LabelOCR.h"
using namespace cv;
using namespace std;
int main( int argc, char** argv )
{
(void)argc;
(void)argv;
VideoCapture cap(0); // open the default camera
if(!cap.isOpened()) // check if we succeeded
return (-1);
Mat normalImage, modImage, cropImage1, labelImage1;
Mat cropImage2, labelImage2, binImage;
vector<Point> contour;
vector<vector<Point> > contours;
Rect label1ROI;
string text1, text2;
DetectLabel detectLabels;
LabelOCR labelOcr;
Ptr< cv::ml::SVM > svmClassifier = cv::ml::SVM::create();
vector<Mat> possible_labels, label_1, label_2;
vector<string> labelText1, labelText2;
detectLabels.showBasicImages = true;
detectLabels.showAllImages = true;
namedWindow("normal",WINDOW_NORMAL);
// SVM learning algorithm
clock_t begin_time = clock();
// Read file storage.
FileStorage fs;
fs.open("/home/chd/Documents/sandbox/openCV_Tesseract_test/ml/SVM.xml", FileStorage::READ);
Mat SVM_TrainingData;
Mat SVM_Classes;
fs["TrainingData"] >> SVM_TrainingData;
fs["classes"] >> SVM_Classes;
/* Set values to train SVM */
svmClassifier->setCoef0( 0.0 );
svmClassifier->setDegree( 0 );
svmClassifier->setTermCriteria( TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 1000, 0.01 ) );
svmClassifier->setGamma( 0 );
svmClassifier->setKernel( cv::ml::SVM::LINEAR );
svmClassifier->setNu( 0 );
svmClassifier->setP( 1.0 ); // for EPSILON_SVR, epsilon in loss function?
svmClassifier->setC( 0.1 ); // From paper, soft classifier
svmClassifier->setType( cv::ml::SVM::C_SVC ); // C_SVC; // EPSILON_SVR; // may be also NU_SVR; // do regression task
svmClassifier->train( SVM_TrainingData, cv::ml::ROW_SAMPLE, SVM_Classes );
float timer = ( clock () - begin_time ) / CLOCKS_PER_SEC;
cout << "Time: " << timer << endl;
while(true)
{
cap >> normalImage; // get a new frame from camera
imshow("normal", normalImage);
possible_labels.clear();
label_1.clear();
label_2.clear();
// segmentation
detectLabels.segment(normalImage,possible_labels);
int posLabels = possible_labels.size();
if (posLabels > 0)
{
//For each possible label, classify with svm if it is a label or no
for(int i=0; i< posLabels; i++)
{
if (!possible_labels[i].empty() )
{
Mat gray;
cvtColor(possible_labels[i], gray, cv::COLOR_RGB2GRAY);
Mat p= gray.reshape(1, 1);
p.convertTo(p, CV_32FC1);
int response = (int)svmClassifier->predict( p );
cout << "Class: " << response << endl;
if(response==1)
label_1.push_back(possible_labels[i]);
if(response==2)
label_2.push_back(possible_labels[i]);
}
}
}
if ( label_1.size() > 0)
{
labelText1 = labelOcr.runRecognition(label_1,1);
}
if ( label_2.size() > 0) {
labelText2 = labelOcr.runRecognition(label_2,2);
}
if(waitKey(30) >= 0) break;
}
return (0);
}