-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrectangle.py
114 lines (92 loc) · 3.27 KB
/
rectangle.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
'''
参考ソース
https://symfoware.blog.fc2.com/blog-entry-2163.html
http://labs.eecs.tottori-u.ac.jp/sd/Member/oyamada/OpenCV/html/py_tutorials/py_imgproc/py_contours/py_contour_features/py_contour_features.html
手順
1. イメージのサイズ取得
2. グレースケールに変更
3. エッジ平滑化処理
4. 二値化
5. 膨張処理:4近傍で注目画素に対して上下左右画素、8近傍で4近傍+斜め方向画素を加える
6. 白黒領域変換
7. 再度二値化
8. 輪郭抽出
9. 輪郭描画
10.デバッグ画像取得
11.最大輪郭にバウンディングボックスを描画
12.
'''
import cv2
import numpy as np
def main():
# import image
img = "images/rect_gauge1.jpg"
src = cv2.imread(img,1) # color(default)
# src = cv2.imread(img,0) # grayscale
# src = cv2.imread(img,-1) # alfachannel
# get image size
h, w, channels = src.shape
img_size = h * w
# conversion to grayscale
gray = cv2.cvtColor(src, cv2.COLOR_RGB2GRAY)
# Edge smoothing
gray = cv2.GaussianBlur(gray, (5,5), 1)
# threshold(necessary to manual setting for 2th argument)
ret, dst = cv2.threshold(gray,200,255,0)
# Define neiborhood4
neiborhood4 = np.array([[0,1,0],
[1,1,1],
[0,1,0]],
np.uint8)
# Define neiborhood8
neiborhood8 = np.array([[1, 1, 1],
[1, 1, 1],
[1, 1, 1]],
np.uint8)
# 8近傍で膨張処理
dst = cv2.dilate(dst,neiborhood8,iterations=1)
# inverted black to white
dst = cv2.bitwise_not(dst)
# re-filtering
ret, dst = cv2.threshold(dst, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)
# extract contours
dst, contours, hierarchy = cv2.findContours(dst, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
# export debug image
dst = cv2.imread(img, 1)
dst = cv2.drawContours(dst, contours, -1, (0, 0, 255, 255), 2, cv2.LINE_AA)
cv2.imwrite("debug_1.jpg", dst)
dst = cv2.imread(img, 1)
# draw bounding rectangle
for i, contour in enumerate(contours):
# 小さな領域の場合は間引く
area = cv2.contourArea(contour)
if area < 1000:
continue
# 画像全体を占める領域は除外する
if img_size * 0.99 < area:
continue
# 外接矩形を取得
x,y,w,h = cv2.boundingRect(contour)
dst = cv2.rectangle(dst,(x,y),(x+w,y+h),(0,255,0),2)
x1 = x
y1 = y
x2 = x+w
y2 = y+h
# 座標は左上、右上、左下、右下の順番
# 外接矩形の座標及び、サイズでリサイズを行う。
pts1 = np.float32([[x1,y1],[x2,y1],[x1,y2],[x2,y2]])
pts2 = np.float32([[0,0],[600,0],[0,600],[600,600]])
M = cv2.getPerspectiveTransform(pts1,pts2)
# width, heightの順番
dst = cv2.warpPerspective(dst,M,(600,600))
# get rectangle
# cv2.getRectSubPix(src=dst,patchSize=[300,300],center=,dst=,patshType=)
# show window
cv2.imshow("result.jpg", dst)
# save result
cv2.imwrite("result.jpg", dst)
# hold window
cv2.waitKey(0)
cv2.destroyAllWindows()
if __name__ == '__main__':
main()