-
Notifications
You must be signed in to change notification settings - Fork 29
/
groupsoftmax_faster_r101v2c4_c5_256roi_syncbn_1x.py
executable file
·303 lines (244 loc) · 9.67 KB
/
groupsoftmax_faster_r101v2c4_c5_256roi_syncbn_1x.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
from symbol.builder import FasterRcnn as Detector
from symbol.builder import MXNetResNet101V2 as Backbone
from symbol.builder import Neck
from symbol.builder import RpnHead
from symbol.builder import RoiAlign as RoiExtractor
from symbol.builder import BboxC5Head as BboxHead
from mxnext.complicate import normalizer_factory
import numpy as np
def get_config(is_train):
class General:
use_groupsoftmax = True
log_frequency = 20
name = __name__.rsplit("/")[-1].rsplit(".")[-1]
batch_image = 2 if is_train else 1
fp16 = True
class KvstoreParam:
kvstore = "local"
batch_image = General.batch_image
gpus = [0, 1, 2, 3, 4, 5, 6, 7]
fp16 = General.fp16
class NormalizeParam:
if is_train:
normalizer = normalizer_factory(type="syncbn", ndev=len(KvstoreParam.gpus))
else:
normalizer = normalizer_factory(type="fixbn")
class BackboneParam:
fp16 = General.fp16
normalizer = NormalizeParam.normalizer
class NeckParam:
fp16 = General.fp16
normalizer = NormalizeParam.normalizer
class RpnParam:
fp16 = General.fp16
normalizer = normalizer_factory(type="fixbn") # old model does not use BN in RPN head
batch_image = General.batch_image
use_groupsoftmax = General.use_groupsoftmax
num_class = (1 + 2) if use_groupsoftmax else 2
class anchor_generate:
scale = (2, 4, 8, 16, 32)
ratio = (0.5, 1.0, 2.0)
stride = 16
image_anchor = 256
class head:
conv_channel = 512
mean = (0, 0, 0, 0)
std = (1, 1, 1, 1)
class proposal:
pre_nms_top_n = 12000 if is_train else 6000
post_nms_top_n = 2000 if is_train else 1000
nms_thr = 0.7
min_bbox_side = 0
class subsample_proposal:
proposal_wo_gt = True
image_roi = 256
fg_fraction = 0.25
fg_thr = 0.5
bg_thr_hi = 0.5
bg_thr_lo = 0.0
class bbox_target:
num_reg_class = 2
class_agnostic = True
weight = (1.0, 1.0, 1.0, 1.0)
mean = (0.0, 0.0, 0.0, 0.0)
std = (0.1, 0.1, 0.2, 0.2)
class BboxParam:
fp16 = General.fp16
normalizer = NormalizeParam.normalizer
num_class = 1 + 83
image_roi = 256
batch_image = General.batch_image
use_groupsoftmax = General.use_groupsoftmax
class regress_target:
class_agnostic = True
mean = (0.0, 0.0, 0.0, 0.0)
std = (0.1, 0.1, 0.2, 0.2)
class RoiParam:
fp16 = General.fp16
normalizer = NormalizeParam.normalizer
out_size = 7
stride = 16
class DatasetParam:
if is_train:
image_set = ("coco_train2014", "coco_valminusminival2014", "cctsdb_train")
else:
image_set = ("coco_minival2014", )
backbone = Backbone(BackboneParam)
neck = Neck(NeckParam)
rpn_head = RpnHead(RpnParam)
roi_extractor = RoiExtractor(RoiParam)
bbox_head = BboxHead(BboxParam)
detector = Detector()
if is_train:
train_sym = detector.get_train_symbol(backbone, neck, rpn_head, roi_extractor, bbox_head)
rpn_test_sym = None
test_sym = None
else:
train_sym = None
rpn_test_sym = detector.get_rpn_test_symbol(backbone, neck, rpn_head)
test_sym = detector.get_test_symbol(backbone, neck, rpn_head, roi_extractor, bbox_head)
class ModelParam:
train_symbol = train_sym
test_symbol = test_sym
rpn_test_symbol = rpn_test_sym
from_scratch = False
random = True
memonger = False
memonger_until = "stage3_unit21_plus"
class pretrain:
prefix = "pretrain_model/resnet-101"
epoch = 0
fixed_param = []
class OptimizeParam:
class optimizer:
type = "sgd"
lr = 0.01 / 8 * len(KvstoreParam.gpus) * KvstoreParam.batch_image
momentum = 0.9
wd = 0.0001
clip_gradient = 5
class schedule:
begin_epoch = 0
end_epoch = 6
lr_iter = [60000 * 16 // (len(KvstoreParam.gpus) * KvstoreParam.batch_image),
80000 * 16 // (len(KvstoreParam.gpus) * KvstoreParam.batch_image)]
class warmup:
type = "gradual"
lr = 0.0
iter = 3000 * 16 // (len(KvstoreParam.gpus) * KvstoreParam.batch_image)
class TestParam:
min_det_score = 0.05
max_det_per_image = 100
process_roidb = lambda x: x
process_output = lambda x, y: x
class model:
prefix = "experiments/{}/checkpoint".format(General.name)
epoch = OptimizeParam.schedule.end_epoch
class nms:
type = "nms"
thr = 0.5
class coco:
annotation = "/ws/data/opendata/coco/annotations/instances_minival2014.json"
# data processing
class GroupParam:
# box 83 classes
boxv0 = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, \
31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, \
61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83], dtype=np.float32)
#COCO benchmark
boxv1 = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, \
31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, \
61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 0, 0, 0 ], dtype=np.float32)
#CCTSDB benchmark
boxv2 = np.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 81, 82, 83], dtype=np.float32)
rpnv0 = np.array([0, 1, 2], dtype=np.float32) # rpn 3 classes
rpnv1 = np.array([0, 1, 0], dtype=np.float32) # COCO benchmark
rpnv2 = np.array([0, 0, 2], dtype=np.float32) # CCTSDB benchmark
rpn_groups = [rpnv0, rpnv1, rpnv2]
box_groups = [boxv0, boxv1, boxv2]
class ResizeParam:
short = 800
long = 1200 if is_train else 2000
class PadParam:
short = 800
long = 1200
max_num_gt = 100
class AnchorTarget2DParam:
class generate:
short = 800 // 16
long = 1200 // 16
stride = 16
scales = (2, 4, 8, 16, 32)
aspects = (0.5, 1.0, 2.0)
use_groupsoftmax = General.use_groupsoftmax
class assign:
allowed_border = 0
pos_thr = 0.7
neg_thr = 0.3
min_pos_thr = 0.0
class sample:
image_anchor = 256
pos_fraction = 0.5
def gtclass2rpn(gtclass):
class_gap = 80
gtclass[gtclass > class_gap] = -1
gtclass[gtclass > 0] = 1
gtclass[gtclass < 0] = 2
return gtclass
class RenameParam:
mapping = dict(image="data")
from core.detection_input import ReadRoiRecord, Resize2DImageBbox, \
ConvertImageFromHwcToChw, Flip2DImageBbox, Pad2DImageBbox, \
RenameRecord, AnchorTarget2D, GroupRead
if is_train:
transform = [
ReadRoiRecord(None),
Resize2DImageBbox(ResizeParam),
Flip2DImageBbox(),
Pad2DImageBbox(PadParam),
ConvertImageFromHwcToChw(),
AnchorTarget2D(AnchorTarget2DParam),
RenameRecord(RenameParam.mapping)
]
data_name = ["data", "im_info", "gt_bbox"]
label_name = ["rpn_cls_label", "rpn_reg_target", "rpn_reg_weight"]
if General.use_groupsoftmax:
data_name.append("rpn_group")
data_name.append("box_group")
transform.append(GroupRead(GroupParam))
else:
transform = [
ReadRoiRecord(None),
Resize2DImageBbox(ResizeParam),
ConvertImageFromHwcToChw(),
RenameRecord(RenameParam.mapping)
]
data_name = ["data", "im_info", "im_id", "rec_id"]
label_name = []
import core.detection_metric as metric
rpn_acc_metric = metric.AccWithIgnore(
"RpnAcc",
["rpn_cls_loss_output"],
["rpn_cls_label"]
)
rpn_l1_metric = metric.L1(
"RpnL1",
["rpn_reg_loss_output"],
["rpn_cls_label"]
)
# for bbox, the label is generated in network so it is an output
box_acc_metric = metric.AccWithIgnore(
"RcnnAcc",
["bbox_cls_loss_output", "bbox_label_blockgrad_output"],
[]
)
box_l1_metric = metric.L1(
"RcnnL1",
["bbox_reg_loss_output", "bbox_label_blockgrad_output"],
[]
)
metric_list = [rpn_acc_metric, rpn_l1_metric, box_acc_metric, box_l1_metric]
return General, KvstoreParam, RpnParam, RoiParam, BboxParam, DatasetParam, \
ModelParam, OptimizeParam, TestParam, \
transform, data_name, label_name, metric_list