-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrainer_lstm_seq2emo.py
executable file
·452 lines (379 loc) · 17.9 KB
/
trainer_lstm_seq2emo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
import os
import random
from torch.utils.data import Dataset, DataLoader
import torch
import numpy as np
from models.seq2seq_lstm import LSTMSeq2Seq
import torch.nn as nn
import torch.optim as optim
from tqdm import tqdm
from utils.early_stopping import EarlyStopping
import pickle as pkl
from utils.seq2emo_metric import get_metrics, get_multi_metrics, jaccard_score, get_single_metrics
from utils.tokenizer import GloveTokenizer
from copy import deepcopy
from allennlp.modules.elmo import Elmo, batch_to_ids
import argparse
from data.data_loader import load_sem18_data, load_goemotions_data
from utils.scheduler import get_cosine_schedule_with_warmup
import utils.nn_utils as nn_utils
from utils.others import find_majority
from utils.file_logger import get_file_logger
# Argument parser
parser = argparse.ArgumentParser(description='Options')
parser.add_argument('--batch_size', default=32, type=int, help="batch size")
parser.add_argument('--pad_len', default=50, type=int, help="batch size")
parser.add_argument('--postname', default='', type=str, help="post name")
parser.add_argument('--gamma', default=0.2, type=float, help="post name")
parser.add_argument('--folds', default=5, type=int, help="num of folds")
parser.add_argument('--en_lr', default=5e-4, type=float, help="encoder learning rate")
parser.add_argument('--de_lr', default=1e-4, type=float, help="decoder learning rate")
parser.add_argument('--loss', default='ce', type=str, help="loss function ce/focal")
parser.add_argument('--dataset', default='sem18', type=str, choices=['sem18', 'goemotions'])
parser.add_argument('--en_dim', default=1200, type=int, help="dimension")
parser.add_argument('--de_dim', default=400, type=int, help="dimension")
parser.add_argument('--criterion', default='jaccard', type=str, choices=['jaccard', 'macro', 'micro', 'h_loss'])
parser.add_argument('--glove_path', default='data/glove.840B.300d.txt', type=str)
parser.add_argument('--attention', default='dot', type=str, help='general/mlp/dot')
parser.add_argument('--dropout', default=0.3, type=float, help='dropout rate')
parser.add_argument('--encoder_dropout', default=0.2, type=float, help='dropout rate')
parser.add_argument('--decoder_dropout', default=0, type=float, help='dropout rate')
parser.add_argument('--attention_dropout', default=0.2, type=float, help='dropout rate')
parser.add_argument('--patience', default=13, type=int, help='dropout rate')
parser.add_argument('--download_elmo', action='store_true')
parser.add_argument('--scheduler', action='store_true')
parser.add_argument('--glorot_init', action='store_true')
parser.add_argument('--warmup_epoch', default=0, type=float, help='')
parser.add_argument('--stop_epoch', default=10, type=float, help='')
parser.add_argument('--max_epoch', default=20, type=float, help='')
parser.add_argument('--min_lr_ratio', default=0.1, type=float, help='')
parser.add_argument('--fix_emb', action='store_true')
parser.add_argument('--fix_emo_emb', action='store_true')
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--input_feeding', action='store_true', default=True)
parser.add_argument('--dev_split_seed', type=int, default=0)
parser.add_argument('--normal_init', action='store_true')
parser.add_argument('--unify_decoder', action='store_true')
parser.add_argument('--eval_every', type=bool, default=True)
parser.add_argument('--log_path', type=str, default=None)
parser.add_argument('--attention_heads', type=int, default=1)
parser.add_argument('--concat_signal', action='store_true')
parser.add_argument('--no_cross', action='store_true')
parser.add_argument('--output_path', type=str, default=None)
parser.add_argument('--attention_type', type=str, default="luong", choices=['transformer', 'luong'])
parser.add_argument('--load_emo_emb', action='store_true')
parser.add_argument('--shuffle_emo', type=str, default=None)
parser.add_argument('--single_direction', action='store_true')
args = parser.parse_args()
if args.log_path is not None:
dir_path = os.path.dirname(args.log_path)
if not os.path.exists(dir_path):
os.makedirs(dir_path)
logger = get_file_logger(args.log_path) # Note: this is ugly, but I am lazy
SRC_EMB_DIM = 300
MAX_LEN_DATA = args.pad_len
PAD_LEN = MAX_LEN_DATA
MIN_LEN_DATA = 3
BATCH_SIZE = args.batch_size
CLIPS = 0.666
GAMMA = 0.5
SRC_HIDDEN_DIM = args.en_dim
TGT_HIDDEN_DIM = args.de_dim
VOCAB_SIZE = 60000
ENCODER_LEARNING_RATE = args.en_lr
DECODER_LEARNING_RATE = args.de_lr
ATTENTION = args.attention
PATIENCE = args.patience
WARMUP_EPOCH = args.warmup_epoch
STOP_EPOCH = args.stop_epoch
MAX_EPOCH = args.max_epoch
RANDOM_SEED = args.seed
# Seed
torch.manual_seed(RANDOM_SEED)
torch.cuda.manual_seed(RANDOM_SEED)
torch.cuda.manual_seed_all(RANDOM_SEED)
np.random.seed(RANDOM_SEED)
random.seed(RANDOM_SEED)
# Init Elmo model
if args.download_elmo:
options_file = "https://s3-us-west-2.amazonaws.com/allennlp/models/elmo/2x4096_512_2048cnn_2xhighway/elmo_2x4096_512_2048cnn_2xhighway_options.json"
weight_file = "https://s3-us-west-2.amazonaws.com/allennlp/models/elmo/2x4096_512_2048cnn_2xhighway/elmo_2x4096_512_2048cnn_2xhighway_weights.hdf5"
else:
options_file = "elmo_2x4096_512_2048cnn_2xhighway_options.json"
weight_file = "elmo_2x4096_512_2048cnn_2xhighway_weights.hdf5"
elmo = Elmo(options_file, weight_file, 2, dropout=0).cuda()
elmo.eval()
GLOVE_EMB_PATH = args.glove_path
glove_tokenizer = GloveTokenizer(PAD_LEN)
data_path_postfix = '_split'
data_pkl_path = 'data/' + args.dataset + data_path_postfix + '_data.pkl'
if not os.path.isfile(data_pkl_path):
if args.dataset == 'sem18':
X_train_dev, y_train_dev, X_test, y_test, EMOS, EMOS_DIC, data_set_name = \
load_sem18_data()
elif args.dataset == 'goemotions':
X_train_dev, y_train_dev, X_test, y_test, EMOS, EMOS_DIC, data_set_name = \
load_goemotions_data()
else:
raise NotImplementedError
with open(data_pkl_path, 'wb') as f:
logger('Writing file')
pkl.dump((X_train_dev, y_train_dev, X_test, y_test, EMOS, EMOS_DIC, data_set_name), f)
else:
with open(data_pkl_path, 'rb') as f:
logger('loading file')
X_train_dev, y_train_dev, X_test, y_test, EMOS, EMOS_DIC, data_set_name = pkl.load(f)
NUM_EMO = len(EMOS)
class TestDataReader(Dataset):
def __init__(self, X, pad_len):
self.glove_ids = []
self.glove_ids_len = []
self.pad_len = pad_len
self.build_glove_ids(X)
def build_glove_ids(self, X):
for src in X:
glove_id, glove_id_len = glove_tokenizer.encode_ids_pad(src)
self.glove_ids.append(glove_id)
self.glove_ids_len.append(glove_id_len)
def __len__(self):
return len(self.glove_ids)
def __getitem__(self, idx):
return torch.LongTensor(self.glove_ids[idx]), \
torch.LongTensor([self.glove_ids_len[idx]])
class TrainDataReader(TestDataReader):
def __init__(self, X, y, pad_len):
super(TrainDataReader, self).__init__(X, pad_len)
self.y = []
self.read_target(y)
def read_target(self, y):
self.y = y
def __getitem__(self, idx):
return torch.LongTensor(self.glove_ids[idx]), \
torch.LongTensor([self.glove_ids_len[idx]]), \
torch.LongTensor(self.y[idx])
def elmo_encode(ids):
data_text = [glove_tokenizer.decode_ids(x) for x in ids]
with torch.no_grad():
character_ids = batch_to_ids(data_text).cuda()
elmo_emb = elmo(character_ids)['elmo_representations']
elmo_emb = (elmo_emb[0] + elmo_emb[1]) / 2 # avg of two layers
return elmo_emb
def show_classification_report(gold, pred):
from sklearn.metrics import classification_report
logger(classification_report(gold, pred, target_names=EMOS, digits=4))
def eval(model, best_model, loss_criterion, es, dev_loader, dev_set):
# Evaluate
exit_training = False
model.eval()
test_loss_sum = 0
preds = []
gold = []
logger("Evaluating:")
for i, loader_input in tqdm(enumerate(dev_loader), total=int(len(dev_set) / BATCH_SIZE), disable=True):
src, src_len, trg = loader_input
with torch.no_grad():
elmo_src = elmo_encode(src)
decoder_logit = model(src.cuda(), src_len.cuda(), elmo_src.cuda())
test_loss = loss_criterion(
decoder_logit.view(-1, decoder_logit.shape[-1]),
trg.view(-1).cuda()
)# /src.size(0)
test_loss_sum += test_loss.data.cpu().numpy() * src.shape[0]
gold.append(trg.data.numpy())
preds.append(np.argmax(decoder_logit.data.cpu().numpy(), axis=-1))
del decoder_logit
preds = np.concatenate(preds, axis=0)
gold = np.concatenate(gold, axis=0)
# binary_gold = conver_to_binary(gold)
# binary_preds = conver_to_binary(preds)
metric = get_metrics(gold, preds)
jaccard = jaccard_score(gold, preds)
logger("Evaluation results:")
# show_classification_report(binary_gold, binary_preds)
logger("Evaluation Loss", test_loss_sum / len(dev_set))
logger('Normal: h_loss:', metric[0], 'macro F', metric[1], 'micro F', metric[4], 'micro P', metric[5],
'micro R', metric[6])
metric_2 = get_multi_metrics(gold, preds)
logger('Multi only: h_loss:', metric_2[0], 'macro F', metric_2[1], 'micro F', metric_2[4])
logger('Jaccard:', jaccard)
if args.criterion == 'loss':
criterion = test_loss_sum
elif args.criterion == 'macro':
criterion = 1 - metric[1]
elif args.criterion == 'micro':
criterion = 1 - metric[4]
elif args.criterion == 'h_loss':
criterion = metric[0]
elif args.criterion == 'jaccard':
criterion = 1 - jaccard
else:
raise ValueError
if es.step(criterion): # overfitting
del model
logger('overfitting, loading best model ...')
model = best_model
exit_training = True
else:
if es.is_best():
if best_model is not None:
del best_model
logger('saving best model ...')
best_model = deepcopy(model)
else:
logger(f'patience {es.cur_patience} not best model , ignoring ...')
if best_model is None:
best_model = deepcopy(model)
return model, best_model, exit_training
def train(X_train, y_train, X_dev, y_dev, X_test, y_test):
train_set = TrainDataReader(X_train, y_train, MAX_LEN_DATA)
train_loader = DataLoader(train_set, batch_size=BATCH_SIZE, shuffle=True)
dev_set = TrainDataReader(X_dev, y_dev, MAX_LEN_DATA)
dev_loader = DataLoader(dev_set, batch_size=BATCH_SIZE*3, shuffle=False)
test_set = TestDataReader(X_test, MAX_LEN_DATA)
test_loader = DataLoader(test_set, batch_size=BATCH_SIZE*3, shuffle=False)
# Model initialize
model = LSTMSeq2Seq(
emb_dim=SRC_EMB_DIM,
vocab_size=glove_tokenizer.get_vocab_size(),
trg_vocab_size=NUM_EMO,
src_hidden_dim=SRC_HIDDEN_DIM,
trg_hidden_dim=TGT_HIDDEN_DIM,
attention_mode=ATTENTION,
batch_size=BATCH_SIZE,
nlayers=2,
nlayers_trg=2,
dropout=args.dropout,
encoder_dropout=args.encoder_dropout,
decoder_dropout=args.decoder_dropout,
attention_dropout=args.attention_dropout,
args=args
)
if args.fix_emb:
para_group = [
{'params': [p for n, p in model.named_parameters() if n.startswith("encoder") and
not 'encoder.embeddings' in n], 'lr': args.en_lr},
{'params': [p for n, p in model.named_parameters() if n.startswith("decoder")], 'lr': args.de_lr}]
else:
para_group = [
{'params': [p for n, p in model.named_parameters() if n.startswith("encoder")], 'lr': args.en_lr},
{'params': [p for n, p in model.named_parameters() if n.startswith("decoder")], 'lr': args.de_lr}]
loss_criterion = nn.CrossEntropyLoss() # reduction='sum'
optimizer = optim.Adam(para_group)
if args.scheduler:
epoch_to_step = len(train_set) / BATCH_SIZE
scheduler = get_cosine_schedule_with_warmup(
optimizer, num_warmup_steps=int(WARMUP_EPOCH * epoch_to_step),
num_training_steps=int(STOP_EPOCH * epoch_to_step),
min_lr_ratio=args.min_lr_ratio
)
if args.glorot_init:
logger('use glorot initialization')
for group in para_group:
nn_utils.glorot_init(group['params'])
model.load_encoder_embedding(glove_tokenizer.get_embeddings(), fix_emb=args.fix_emb)
model.load_emotion_embedding(glove_tokenizer.get_emb_by_words(GLOVE_EMB_PATH, EMOS))
model.cuda()
# Start training
EVAL_EVERY = int(len(train_set) / BATCH_SIZE / 4)
best_model = None
es = EarlyStopping(patience=PATIENCE)
update_step = 0
exit_training = False
for epoch in range(1, MAX_EPOCH+1):
logger('Training on epoch=%d -------------------------' % (epoch))
train_loss_sum = 0
# print('Current encoder learning rate', scheduler.get_lr())
# print('Current decoder learning rate', scheduler.get_lr())
for i, loader_input in tqdm(enumerate(train_loader), total=int(len(train_set) / BATCH_SIZE)):
model.train()
update_step += 1
# print('i=%d: ' % (i))
# trg = torch.index_select(trg, 1, torch.LongTensor(list(range(1, len(EMOS)+1))))
src, src_len, trg = loader_input
optimizer.zero_grad()
elmo_src = elmo_encode(src)
decoder_logit = model(src.cuda(), src_len.cuda(), elmo_src.cuda())
loss = loss_criterion(
decoder_logit.view(-1, decoder_logit.shape[-1]),
trg.view(-1).cuda()
)# /src.size(0)
loss.backward()
train_loss_sum += loss.data.cpu().numpy() * src.shape[0]
torch.nn.utils.clip_grad_norm_(model.parameters(), CLIPS)
optimizer.step()
if args.scheduler:
scheduler.step()
if update_step % EVAL_EVERY == 0 and args.eval_every is not None:
model, best_model, exit_training = eval(model, best_model, loss_criterion, es, dev_loader, dev_set)
if exit_training:
break
logger(f"Training Loss for epoch {epoch}:", train_loss_sum / len(train_set))
# model, best_model, exit_training = eval(model, best_model, loss_criterion, es, dev_loader, dev_set)
if exit_training:
break
# final_testing
model.eval()
preds = []
logger("Testing:")
for i, loader_input in tqdm(enumerate(test_loader), total=int(len(test_set) / BATCH_SIZE)):
with torch.no_grad():
src, src_len = loader_input
elmo_src = elmo_encode(src)
decoder_logit = model(src.cuda(), src_len.cuda(), elmo_src.cuda())
preds.append(np.argmax(decoder_logit.data.cpu().numpy(), axis=-1))
del decoder_logit
preds = np.concatenate(preds, axis=0)
gold = np.asarray(y_test)
binary_gold = gold
binary_preds = preds
logger("NOTE, this is on the test set")
metric = get_metrics(binary_gold, binary_preds)
logger('Normal: h_loss:', metric[0], 'macro F', metric[1], 'micro F', metric[4])
metric = get_multi_metrics(binary_gold, binary_preds)
logger('Multi only: h_loss:', metric[0], 'macro F', metric[1], 'micro F', metric[4])
# show_classification_report(binary_gold, binary_preds)
logger('Jaccard:', jaccard_score(gold, preds))
return binary_gold, binary_preds
def main():
global X_train_dev, X_test, y_train_dev, y_test
if args.shuffle_emo is not None:
new_order = np.asarray([int(tmp) for tmp in args.shuffle_emo.split()])
y_train_dev = np.asarray(y_train_dev).T[new_order].T
y_test = np.asarray(y_test).T[new_order].T
glove_tokenizer.build_tokenizer(X_train_dev + X_test, vocab_size=VOCAB_SIZE)
glove_tokenizer.build_embedding(GLOVE_EMB_PATH, dataset_name=data_set_name)
from sklearn.model_selection import ShuffleSplit, KFold
kf = KFold(n_splits=args.folds, random_state=args.dev_split_seed)
# kf.get_n_splits(X_train_dev)
all_preds = []
gold_list = None
for i, (train_index, dev_index) in enumerate(kf.split(y_train_dev)):
logger('STARTING Fold -----------', i + 1)
X_train, X_dev = [X_train_dev[i] for i in train_index], [X_train_dev[i] for i in dev_index]
y_train, y_dev = [y_train_dev[i] for i in train_index], [y_train_dev[i] for i in dev_index]
gold_list, pred_list = train(X_train, y_train, X_dev, y_dev, X_test, y_test)
all_preds.append(pred_list)
if args.no_cross:
break
all_preds = np.stack(all_preds, axis=0)
shape = all_preds[0].shape
mj = np.zeros(shape)
for m in range(shape[0]):
for n in range(shape[1]):
mj[m, n] = find_majority(np.asarray(all_preds[:, m, n]).reshape((-1)))[0]
final_pred = mj
show_classification_report(gold_list, final_pred)
metric = get_metrics(gold_list, final_pred)
logger('Normal: h_loss:', metric[0], 'macro F', metric[1], 'micro F', metric[4])
metric = get_multi_metrics(gold_list, final_pred)
logger('Multi only: h_loss:', metric[0], 'macro F', metric[1], 'micro F', metric[4])
metric = get_single_metrics(gold_list, final_pred)
logger('Single only: h_loss:', metric[0], 'macro F', metric[1], 'micro F', metric[4])
logger('Final Jaccard:', jaccard_score(gold_list, final_pred))
logger(os.path.basename(__file__))
logger(args)
if args.output_path is not None:
with open(args.output_path, 'bw') as _f:
pkl.dump(final_pred, _f)
if __name__ == '__main__':
main()