-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsubmit15Feb15.py
executable file
·45 lines (32 loc) · 1.15 KB
/
submit15Feb15.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
#
# Script to generate submission for OceanHealth Kaggle contest
#
import ImageImport
import FeatureExtraction
import Utils
from sklearn import svm
print "Importing training data"
classNames, y, X = ImageImport.LoadTrainingData()
print "Importing test data"
imageNames, X_test = ImageImport.LoadTestData()
print "Training SVM at C = 0.25"
mySVM = svm.SVC(probability=True, C=0.25)
mySVM.fit(X,y)
print "Making predictions"
y_pred = mySVM.predict_proba(X_test)
print "Generating submission file"
Utils.WriteSubmission('OceanHealth14Feb15c0.25.csv', imageNames, classNames, y_pred)
print "Training SVM at C = 0.5"
mySVM = svm.SVC(probability=True, C=0.5)
mySVM.fit(X,y)
print "Making predictions"
y_pred = mySVM.predict_proba(X_test)
print "Generating submission file"
Utils.WriteSubmission('OceanHealth14Feb15c0.50.csv', imageNames, classNames, y_pred)
print "Training SVM at C = 0.75"
mySVM = svm.SVC(probability=True, C=0.75)
mySVM.fit(X,y)
print "Making predictions"
y_pred = mySVM.predict_proba(X_test)
print "Generating submission file"
Utils.WriteSubmission('OceanHealth14Feb15c0.75.csv', imageNames, classNames, y_pred)