-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy pathprogram.py
132 lines (110 loc) · 4.21 KB
/
program.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
# -*- coding: utf-8 -*-
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from argparse import ArgumentParser, RawDescriptionHelpFormatter
import os
import random
import time
import shutil
import traceback
import yaml
import logging
import sys
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
import numpy as np
from copy import deepcopy
from torch.utils import data
import torch
import torch.nn as nn
from tqdm import tqdm
from flags import Flags
from utils import initial_logger, save_checkpoint, load_checkpoint, create_module, weight_init
from trainer import TrainerRec
from torch import optim
class ArgsParser(ArgumentParser):
def __init__(self):
super(ArgsParser, self).__init__(
formatter_class=RawDescriptionHelpFormatter)
self.add_argument("-c", "--config", help="configuration file to use")
def parse_args(self, argv=None):
args = super(ArgsParser, self).parse_args(argv)
assert args.config is not None, \
"Please specify --config=configure_file_path."
return args
def build_config():
args = ArgsParser().parse_args()
flags = Flags(args.config).get()
log_file_path = os.path.join(flags.Global.save_model_dir, time.strftime('%Y%m%d_%H%M%S') + '.log')
os.makedirs(flags.Global.save_model_dir, exist_ok=True)
logger = initial_logger(log_file_path)
return flags
def build_model(flags):
# build network
model_infor = flags.Architecture.function
print('model_infor', model_infor)
model = create_module(model_infor)(flags)
return model
def build_data_loader(flags=None, mode=None):
assert mode in ["train", "validation", "test"], "Nonsupport mode:{}".format(mode)
if mode == "train":
dataloader_infor = deepcopy(flags.TrainReader.dataloader)
elif mode == "validation":
dataloader_infor = deepcopy(flags.EvalReader.dataloader)
dataloader = create_module(dataloader_infor)(flags)
return dataloader
def build_optimizer(flags, model):
if flags.Optimizer.function == 'sgd':
optimizer = optim.SGD(model.parameters(),
lr=flags.Optimizer.base_lr,
momentum=flags.Optimizer.momentum,
weight_decay=flags.Optimizer.weight_decay)
if flags.Optimizer.function == 'adadelta':
optimizer = optim.Adadelta(model.parameters(), lr=flags.Optimizer.base_lr)
else:
optimizer = optim.Adam(model.parameters(), lr=flags.Optimizer.base_lr)
return optimizer
def build_pretrained_weights(flags, model, optimizer):
# 是否加载之前训练的模型
pretrain_weights = flags.Global.pretrain_weights
to_use_device = flags.Global.device
if pretrain_weights and os.path.exists(pretrain_weights):
model, _resumed_optimizer, global_state = load_checkpoint(model, pretrain_weights, to_use_device, optimizer)
if flags.Global.resumed_optimizer and _resumed_optimizer is not None:
optimizer = _resumed_optimizer
else:
global_state = {}
model.apply(weight_init)
return model, optimizer, global_state
def build_device(flags):
if flags.Global.use_gpu:
os.environ["CUDA_VISIBLE_DEVICES"] = flags.Global.gpu_num
if torch.cuda.is_available():
device = torch.device(flags.Global.device)
gpu_count = torch.cuda.device_count()
else:
device = torch.device("cpu")
gpu_count = 0
else:
device = torch.device("cpu")
gpu_count = 0
return device, gpu_count
def build_loss(flags):
loss_params = flags.Loss.function
loss = create_module(loss_params)(params=flags.Loss)
return loss
def build_trainer(model, optimizer, loss, train_loader, val_loader, \
device, flags, global_state):
if flags.Global.algorithm in ['CRNN', 'FAN', 'GRCNN', 'DAN', 'SAR', 'SATRN']:
trainer = TrainerRec(
device=device,
model=model,
optimizer=optimizer,
loss=loss,
val_loader=val_loader,
train_loader=train_loader,
flags=flags,
global_state=global_state
)
return trainer