-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathTypeGraph.cs
384 lines (324 loc) · 12.2 KB
/
TypeGraph.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
namespace Chickensoft.Introspection;
using System;
using System.Collections.Concurrent;
using System.Collections.Generic;
using System.Data;
using System.Linq;
using Chickensoft.Collections;
internal class TypeGraph : ITypeGraph {
#region Caches
private readonly ConcurrentDictionary<Type, ITypeMetadata> _types = new();
private readonly ConcurrentDictionary<string, Dictionary<int, Type>>
_identifiableTypesByIdAndVersion = new();
private readonly ConcurrentDictionary<string, int>
_identifiableLatestVersionsById = new();
private readonly ConcurrentDictionary<Type, Set<Type>> _typesByBaseType =
new();
private readonly ConcurrentDictionary<Type, Set<Type>> _typesByAncestor =
new();
private readonly ConcurrentDictionary<Type, IEnumerable<PropertyMetadata>>
_properties = new();
private readonly ConcurrentDictionary<Type, Dictionary<Type, Attribute[]>>
_attributes = new();
private readonly IReadOnlySet<Type> _emptyTypeSet = new Set<Type>();
// Custom serializable types that do not need generated metadata.
private readonly IReadOnlyDictionary<Type, Attribute[]> _emptyAttributes =
new Dictionary<Type, Attribute[]>();
#endregion Caches
internal void Reset() {
_types.Clear();
_identifiableTypesByIdAndVersion.Clear();
_identifiableLatestVersionsById.Clear();
_typesByBaseType.Clear();
_typesByAncestor.Clear();
_properties.Clear();
_attributes.Clear();
}
#region ITypeGraph
public IEnumerable<Type> IdentifiableTypes => _identifiableTypesByIdAndVersion
.Values
.SelectMany(versions => versions.Values);
public void Register(ITypeRegistry registry) {
RegisterTypes(registry);
PromoteInheritedIdentifiableTypes(registry);
ComputeTypesByBaseType(registry);
}
public int? GetLatestVersion(string id) =>
_identifiableLatestVersionsById.TryGetValue(id, out var version)
? version
: null;
public Type? GetIdentifiableType(string id, int? version = null) => (
(version ?? GetLatestVersion(id)) is int actualVersion &&
_identifiableTypesByIdAndVersion.TryGetValue(id, out var versions) &&
versions.TryGetValue(actualVersion, out var type)
) ? type : null;
public bool HasMetadata(Type type) =>
_types.ContainsKey(type);
public ITypeMetadata? GetMetadata(Type type) =>
_types.TryGetValue(type, out var metadata) ? metadata : null;
public IReadOnlySet<Type> GetSubtypes(Type type) =>
_typesByBaseType.TryGetValue(type, out var subtypes)
? subtypes
: _emptyTypeSet;
public IReadOnlySet<Type> GetDescendantSubtypes(Type type) {
CacheDescendants(type);
return _typesByAncestor[type];
}
public IEnumerable<PropertyMetadata> GetProperties(Type type) {
if (
!_types.ContainsKey(type) ||
_types[type] is not IIntrospectiveTypeMetadata metadata
) {
return [];
}
if (!_properties.TryGetValue(type, out var properties)) {
// Cache the properties for a type so we never have to do this again.
_properties[type] =
GetTypeAndBaseTypes(type)
.Select(GetMetadata)
.OfType<IIntrospectiveTypeMetadata>()
.SelectMany(metadata => metadata.Metatype.Properties)
.Distinct()
.OrderBy(property => property.Name);
}
return _properties[type];
}
public TAttribute? GetAttribute<TAttribute>(Type type)
where TAttribute : Attribute =>
GetAttributes(type).TryGetValue(typeof(TAttribute), out var attributes) &&
attributes is { Length: > 0 } &&
attributes[0] is TAttribute attribute
? attribute
: null;
public IReadOnlyDictionary<Type, Attribute[]> GetAttributes(Type type) {
if (
!_types.ContainsKey(type) ||
_types[type] is not IIntrospectiveTypeMetadata metadata
) {
return _emptyAttributes;
}
if (!_attributes.TryGetValue(type, out var attributes)) {
// Cache the attributes for a type so we never have to do this again.
_attributes[type] = GetTypeAndBaseTypes(type)
.Select(type => _types[type])
.OfType<IIntrospectiveTypeMetadata>()
.SelectMany((metadata) => metadata.Metatype.Attributes)
.GroupBy(
kvp => kvp.Key,
kvp => kvp.Value
)
.ToDictionary(
group => group.Key,
elementSelector: group => group
.SelectMany(attributes => attributes)
.ToArray()
);
}
return _attributes[type];
}
public void AddCustomType(
Type type,
string name,
Action<ITypeReceiver> genericTypeGetter,
Func<object> factory,
string id,
int version = 1
) => RegisterType(
type,
new IdentifiableTypeMetadata(
name,
genericTypeGetter,
factory,
new EmptyMetatype(type),
id,
version
)
);
#endregion ITypeGraph
#region Private Utilities
private void CacheDescendants(Type type) {
if (_typesByAncestor.ContainsKey(type)) {
return;
}
_typesByAncestor[type] = FindDescendants(type);
}
private Set<Type> FindDescendants(Type type) {
var descendants = new Set<Type>();
var queue = new Queue<Type>();
queue.Enqueue(type);
while (queue.Count > 0) {
var currentType = queue.Dequeue();
descendants.Add(currentType);
if (_typesByBaseType.TryGetValue(currentType, out var children)) {
foreach (var child in children) {
queue.Enqueue(child);
}
}
}
descendants.Remove(type);
return descendants;
}
private void RegisterTypes(ITypeRegistry registry) {
// Iterate through all visible types in O(n) time and add them to our
// internal caches.
// Why do this? We want to allow multiple assemblies to use this system to
// find types by their base type or ancestor.
foreach (var type in registry.VisibleTypes.Keys) {
RegisterType(type, registry.VisibleTypes[type]);
}
}
private void RegisterType(
Type @type, ITypeMetadata metadata, bool overwrite = false
) {
// Cache types by system type.
_types[type] = metadata;
if (
metadata is IIdentifiableTypeMetadata identifiableTypeMetadata
) {
// Track types by both id and version.
if (
metadata is IConcreteIntrospectiveTypeMetadata introspectiveMetadata
) {
var id = identifiableTypeMetadata.Id;
var version = introspectiveMetadata.Version;
// Only concrete types are allowed to be versioned.
if (_identifiableTypesByIdAndVersion.TryGetValue(id, out var versions)) {
// Validate that we're not overwriting an existing type if we're not
// allowed to.
if (!overwrite && versions.TryGetValue(version, out var existingType)) {
throw new DuplicateNameException(
$"Cannot register introspective type `{type}` with id `{id}` " +
$"and version `{version}`. A different type with the same id " +
$"and version has already been registered: {existingType}."
);
}
}
else {
versions = [];
_identifiableTypesByIdAndVersion[id] = versions;
}
versions[version] = type;
// Track the latest version of an identifiable type since that's
// usually the one we want to use.
if (
_identifiableLatestVersionsById.TryGetValue(
id, out var existingVersion
)
) {
if (version > existingVersion) {
_identifiableLatestVersionsById[id] = version;
}
}
else {
_identifiableLatestVersionsById[id] = version;
}
}
}
}
private void PromoteInheritedIdentifiableTypes(ITypeRegistry registry) {
// Some introspective types may not be known to be identifiable at
// compile-time since base types cannot be examined without looking at
// analyzer symbol data, which is slow. So, we look at them at runtime and
// promote them to identifiable types right after registration.
foreach (var visibleType in registry.VisibleTypes.Keys) {
var metadata = registry.VisibleTypes[visibleType];
if (metadata is IIdentifiableTypeMetadata) {
// Already identifiable
continue;
}
if (metadata is not IntrospectiveTypeMetadata introspectiveMetadata) {
// Only promote concrete introspective types
continue;
}
var version = introspectiveMetadata.Version;
// Only iterate through base types.
foreach (var type in GetTypeAndBaseTypes(visibleType).Skip(1)) {
metadata = _types[type];
if (metadata is not IIdentifiableTypeMetadata idMetadata) {
continue;
}
// Promote metadata to an identifiable type. Basically, we just take
// the id from the base type and use it for the derived type, while
// keeping its other metadata intact.
metadata = new IdentifiableTypeMetadata(
Name: introspectiveMetadata.Name,
GenericTypeGetter: introspectiveMetadata.GenericTypeGetter,
Factory: introspectiveMetadata.Factory,
Metatype: introspectiveMetadata.Metatype,
Id: idMetadata.Id,
Version: version
);
// Replace existing type metadata with the updated metadata.
RegisterType(visibleType, metadata, overwrite: true);
// Promote based on nearest ancestor to capture the most functionality.
break;
}
}
}
private void ComputeTypesByBaseType(ITypeRegistry registry) {
// Iterate through each type in the registry and its base types,
// constructing a flat map of base types to their immediately derived types.
// The beauty of this approach is that it discovers base types which may be
// in other modules, and works in reflection-free mode since BaseType is
// always supported by every C# environment, even AOT environments.
foreach (var type in registry.VisibleTypes.Keys) {
var lastType = type;
var baseType = type.BaseType;
// As far as we know, any type could be a base type.
if (!_typesByBaseType.ContainsKey(type)) {
_typesByBaseType[type] = [];
}
while (baseType != null) {
if (!_typesByBaseType.TryGetValue(baseType, out var existingSet)) {
existingSet = [];
_typesByBaseType[baseType] = existingSet;
}
existingSet.Add(lastType);
lastType = baseType;
baseType = lastType.BaseType;
}
}
}
/// <summary>
/// Enumerates through a type and its base type hierarchy to discover all
/// metatypes that describe the type and its base types.
/// </summary>
/// <param name="type">Type whose type hierarchy should be examined.</param>
/// <returns>The type's metatype (if it has one), and any metatypes that
/// describe its base types, in the order of the most derived type to the
/// least derived type.</returns>
private IEnumerable<Type> GetTypeAndBaseTypes(Type type) {
var currentType = type;
do {
if (
_types.ContainsKey(currentType) &&
_types[currentType] is IIntrospectiveTypeMetadata
) {
yield return currentType;
}
currentType = currentType.BaseType;
} while (currentType != null);
}
internal class EmptyMetatype(Type type) : IMetatype {
private static readonly List<PropertyMetadata> _properties = [];
private static readonly Dictionary<Type, Attribute[]> _attributes = [];
private static readonly List<Type> _mixins = [];
private static readonly Dictionary<Type, Action<object>> _mixinHandlers =
[];
public Type Type => type;
public bool HasInitProperties => false;
public IReadOnlyList<PropertyMetadata> Properties => _properties;
public IReadOnlyDictionary<Type, Attribute[]> Attributes => _attributes;
public IReadOnlyList<Type> Mixins => _mixins;
public IReadOnlyDictionary<Type, Action<object>> MixinHandlers =>
_mixinHandlers;
public object Construct(
IReadOnlyDictionary<string, object?>? args = null
) => throw new NotImplementedException();
// Always be equal to avoid messing up record comparisons when a member
// of a type.
public override bool Equals(object obj) => true;
public override int GetHashCode() => base.GetHashCode();
}
#endregion Private Utilities
}