-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathutils.py
308 lines (217 loc) · 8.04 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
import numpy as np
import math
import dubins
def map_sampler(map_info):
rand_idx = np.random.random(2) * map_info['map'].shape
while (map_collision_check(map_info, rand_idx)):
rand_idx = np.random.random(2) * map_info['map'].shape
return rand_idx
def map_sampler_goal_bias(map_info, eps):
rand = np.random.random()
if rand > eps:
rand_idx = map_sampler(map_info)
else:
rand_idx = map_info['goal']
return rand_idx
def map_collision_check(map_info, path, return_num_coll=False):
# returns True, if collision
num_collision_checks = 0
collision = False
if type(path) is list:
for node in path:
if _map_collision_check(map_info, node):
num_collision_checks += 1
collision = True
break
else:
collision = _map_collision_check(map_info, path)
num_collision_checks += 1
if return_num_coll:
return collision, num_collision_checks
else:
return collision
def map_closest_obstacle(precomputed, point):
if np.sum(precomputed.shape) == 0:
return float('inf')
cx = np.maximum(np.minimum(point[0], precomputed[:, 0] + 1), precomputed[:, 0])
cy = np.maximum(np.minimum(point[1], precomputed[:, 1] + 1), precomputed[:, 1])
dists = np.sqrt(np.square(cx - point[0]) + np.square(cy - point[1]))
return np.min(dists)
def map_obst_precompute(arr):
idx = np.where(arr == 0)
idx = [np.array([idx[0][i], idx[1][i]]) for i in range(len(idx[0]))]
return np.array(idx)
def map_inbounds(arr, node):
idx = np.array(np.floor(node), dtype=np.int)
if (idx[0] < 0) or (idx[0] >= (arr.shape[0])):
return False
if (idx[1] < 0) or (idx[1] >= (arr.shape[1])):
return False
return True
# returns true of collision
def _map_collision_check(map_info, node):
arr = map_info['map']
idx = np.array(np.floor(node), dtype=np.int)
if (idx[0] < 0) or (idx[0] >= (arr.shape[0])):
return True
if (idx[1] < 0) or (idx[1] >= (arr.shape[1])):
return True
return arr[idx[0], idx[1]] == 0
def get_feat_empty(point, tree, map_info):
feat = np.array([np.linalg.norm(point - map_info['goal'])])
return feat
def get_feat_flytrap(point, tree, map_info):
# goal based features
goal_delta = np.linalg.norm(map_info['goal'] - point)
# tree based features
closest_idx = tree.closest_idx(point, l2_dist)
closest_node = tree.node_states[closest_idx]
tree_delta = np.linalg.norm(closest_node - point)
obst_delta = map_closest_obstacle(map_info['precomputed'], closest_node)
feat = np.array([tree_delta - obst_delta])
return feat
def get_feat_flytrap2(point, tree, map_info):
# goal based features
goal_delta = np.linalg.norm(map_info['goal'] - point)
# tree based features
closest_idx = tree.closest_idx(point, l2_dist)
closest_node = tree.node_states[closest_idx]
tree_delta = np.linalg.norm(closest_node - point)
obst_delta = map_closest_obstacle(map_info['precomputed'], closest_node)
feat = np.array([tree_delta, obst_delta])
return feat
def get_feat_flytrap_bi(point, trees, map_info, curr_tree):
tree = trees[curr_tree]
# goal based features
goal_delta = np.linalg.norm(map_info['goal'] - point)
# tree based features
closest_idx = tree.closest_idx(point, l2_dist)
closest_node = tree.node_states[closest_idx]
tree_delta = np.linalg.norm(closest_node - point)
obst_delta = map_closest_obstacle(map_info['precomputed'], closest_node)
# feat = np.array([tree_delta - obst_delta, curr_tree])
feat = np.array([tree_delta - obst_delta])
return feat
def get_feat_flytrap_est(point_idx, trees, map_info, curr_tree):
tree = trees[curr_tree]
point = tree.node_states[point_idx]
obst_delta = map_closest_obstacle(map_info['precomputed'], point)
w = tree.node_info[point_idx]
feat = np.array([obst_delta, w])
return feat
def get_feat_dynamic_domain(point, tree, map_info):
# tree based features
closest_idx = tree.closest_idx(point, l2_dist)
closest_node = tree.node_states[closest_idx]
tree_delta = np.linalg.norm(closest_node - point)
feat = np.array([tree_delta])
return feat
def get_feat_default(point, tree, map_info):
return point
def l2_dist(node_from, node_to):
return np.linalg.norm(node_from - node_to, axis=1)
def holonomic_steer(node_from, node_to, extend_length=1.5, discrete=0.2):
diff = node_to - node_from
diff_norm = np.linalg.norm(diff)
if diff_norm < 1e-6:
return [node_from], 0
if diff_norm > extend_length:
diff_vec = diff / diff_norm
new_node = node_from + extend_length * diff_vec
else:
new_node = node_from + diff
diff = new_node - node_from
diff_norm = np.linalg.norm(diff)
diff_vec = discrete * diff / diff_norm
num_pts = int(np.floor(diff_norm / discrete))
path = [node_from+diff_vec*(i+1) for i in range(num_pts)]
if math.fabs((diff_norm/discrete)-num_pts) > 1e-6 or num_pts == 0:
path.append(new_node)
return path, diff_norm
def l2_goal_region(node, goal):
return np.linalg.norm(goal - node) < 0.5
def dubins_dist(node_from, node_to, radius=1.0):
res = np.zeros(len(node_from))
for idx, node in enumerate(node_from):
dist = dubins.path_length(node, node_to, radius)
res[idx] = dist
return res
def dubins_steer(node_from, node_to, extend_length=1.5, discrete=0.2, radius=1.0):
path = dubins.path_sample(node_from, node_to, radius, discrete)[0]
length = dubins.path_length(node_from, node_to, radius)
if discrete > length:
discrete = discrete - 1e-5
if extend_length < length:
num_pts = int(np.floor(extend_length / discrete))
path = [np.array(node) for node in path[1:1+num_pts]]
return path, extend_length
else:
path = [np.array(node) for node in path[1:]]
path.append(node_to)
return path, length
def dubins_goal_region(node, goal):
dist = np.linalg.norm(node[0:2] - goal[0:2])
if dist > 0.5:
return False
angdist = wrap_pi(goal[2] - node[2])
if math.fabs(angdist) > 0.4:
return False
return True
def get_disc_rewards(rewards, gamma):
disc_rewards = np.zeros(rewards.shape)
n = len(disc_rewards) - 1
for idx, r in enumerate(reversed(rewards)):
if idx == 0:
disc_rewards[n-idx] = r
else:
disc_rewards[n-idx] = disc_rewards[n-idx+1] * gamma + r
return disc_rewards
# general utils
def wrap_pi(ang):
while ang < -np.pi:
ang += 2 * np.pi
while ang >= np.pi:
ang -= 2 * np.pi
return ang
class RunningStats(object):
def __init__(self, N):
self.N = N
self.vals = []
self.num_filled = 0
def push(self, val):
if self.num_filled == self.N:
self.vals.pop(0)
self.vals.append(val)
else:
self.vals.append(val)
self.num_filled += 1
def push_list(self, vals):
num_vals = len(vals)
self.vals.extend(vals)
self.num_filled += num_vals
if self.num_filled >= self.N:
diff = self.num_filled - self.N
self.num_filled = self.N
self.vals = self.vals[diff:]
def get_mean(self):
return np.mean(self.vals[:self.num_filled])
def get_std(self):
return np.std(self.vals[:self.num_filled])
def get_mean_n(self, n):
start = max(0, self.num_filled-n)
return np.mean(self.vals[start:self.num_filled])
def get_disc_rewards(rewards, gamma):
disc_rewards = np.zeros(rewards.shape)
n = len(disc_rewards) - 1
for idx, r in enumerate(reversed(rewards)):
if idx == 0:
disc_rewards[n-idx] = r
else:
disc_rewards[n-idx] = disc_rewards[n-idx+1] * gamma + r
return disc_rewards
if __name__ == '__main__':
stats = RunningStats(20)
nums = [10, 1, 1, 1, 1, 1, 1]
for num in nums:
stats.push(num)
print("mean: " + str(stats.get_mean_n(3)))