forked from SeanNaren/deepspeech.pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
91 lines (75 loc) · 4.67 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import argparse
from torch.autograd import Variable
from tqdm import tqdm
from decoder import GreedyDecoder
from data.data_loader import SpectrogramDataset, AudioDataLoader
from model import DeepSpeech
parser = argparse.ArgumentParser(description='DeepSpeech transcription')
parser.add_argument('--model_path', default='models/deepspeech_final.pth.tar',
help='Path to model file created by training')
parser.add_argument('--cuda', action="store_true", help='Use cuda to test model')
parser.add_argument('--test_manifest', metavar='DIR',
help='path to validation manifest csv', default='data/test_manifest.csv')
parser.add_argument('--batch_size', default=20, type=int, help='Batch size for training')
parser.add_argument('--num_workers', default=4, type=int, help='Number of workers used in dataloading')
parser.add_argument('--decoder', default="greedy", choices=["greedy", "beam"], type=str, help="Decoder to use")
beam_args = parser.add_argument_group("Beam Decode Options", "Configurations options for the CTC Beam Search decoder")
beam_args.add_argument('--beam_width', default=10, type=int, help='Beam width to use')
beam_args.add_argument('--lm_path', default=None, type=str,
help='Path to an (optional) kenlm language model for use with beam search (req\'d with trie)')
beam_args.add_argument('--trie_path', default=None, type=str,
help='Path to an (optional) trie dictionary for use with beam search (req\'d with LM)')
beam_args.add_argument('--lm_alpha', default=0.8, type=float, help='Language model weight')
beam_args.add_argument('--lm_beta1', default=1, type=float, help='Language model word bonus (all words)')
beam_args.add_argument('--lm_beta2', default=1, type=float, help='Language model word bonus (IV words)')
beam_args.add_argument('--label_size', default=0, type=int, help='Label selection size controls how many items in '
'each beam are passed through to the beam scorer')
beam_args.add_argument('--label_margin', default=-1, type=float, help='Controls difference between minimal input score '
'for an item to be passed to the beam scorer.')
args = parser.parse_args()
if __name__ == '__main__':
model = DeepSpeech.load_model(args.model_path, cuda=args.cuda)
model.eval()
labels = DeepSpeech.get_labels(model)
audio_conf = DeepSpeech.get_audio_conf(model)
if args.decoder == "beam":
from decoder import BeamCTCDecoder
decoder = BeamCTCDecoder(labels, beam_width=args.beam_width, top_paths=1, space_index=labels.index(' '),
blank_index=labels.index('_'), lm_path=args.lm_path,
trie_path=args.trie_path, lm_alpha=args.lm_alpha, lm_beta1=args.lm_beta1,
lm_beta2=args.lm_beta2, label_size=args.label_size, label_margin=args.label_margin)
else:
decoder = GreedyDecoder(labels, space_index=labels.index(' '), blank_index=labels.index('_'))
test_dataset = SpectrogramDataset(audio_conf=audio_conf, manifest_filepath=args.test_manifest, labels=labels,
normalize=True)
test_loader = AudioDataLoader(test_dataset, batch_size=args.batch_size,
num_workers=args.num_workers)
total_cer, total_wer = 0, 0
for i, (data) in tqdm(enumerate(test_loader), total=len(test_loader)):
inputs, targets, input_percentages, target_sizes = data
inputs = Variable(inputs, volatile=True)
# unflatten targets
split_targets = []
offset = 0
for size in target_sizes:
split_targets.append(targets[offset:offset + size])
offset += size
if args.cuda:
inputs = inputs.cuda()
out = model(inputs)
out = out.transpose(0, 1) # TxNxH
seq_length = out.size(0)
sizes = input_percentages.mul_(int(seq_length)).int()
decoded_output, _ = decoder.decode(out.data, sizes)
target_strings = decoder.convert_to_strings(split_targets)
wer, cer = 0, 0
for x in range(len(target_strings)):
wer += decoder.wer(decoded_output[x], target_strings[x]) / float(len(target_strings[x].split()))
cer += decoder.cer(decoded_output[x], target_strings[x]) / float(len(target_strings[x]))
total_cer += cer
total_wer += wer
wer = total_wer / len(test_loader.dataset)
cer = total_cer / len(test_loader.dataset)
print('Test Summary \t'
'Average WER {wer:.3f}\t'
'Average CER {cer:.3f}\t'.format(wer=wer * 100, cer=cer * 100))