forked from SeanNaren/deepspeech.pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
transcribe.py
60 lines (49 loc) · 3.31 KB
/
transcribe.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import argparse
from decoder import GreedyDecoder
from torch.autograd import Variable
from data.data_loader import SpectrogramParser
from model import DeepSpeech
parser = argparse.ArgumentParser(description='DeepSpeech transcription')
parser.add_argument('--model_path', default='models/deepspeech_final.pth.tar',
help='Path to model file created by training')
parser.add_argument('--audio_path', default='audio.wav',
help='Audio file to predict on')
parser.add_argument('--cuda', action="store_true", help='Use cuda to test model')
parser.add_argument('--decoder', default="greedy", choices=["greedy", "beam"], type=str, help="Decoder to use")
beam_args = parser.add_argument_group("Beam Decode Options", "Configurations options for the CTC Beam Search decoder")
beam_args.add_argument('--beam_width', default=10, type=int, help='Beam width to use')
beam_args.add_argument('--lm_path', default=None, type=str,
help='Path to an (optional) kenlm language model for use with beam search (req\'d with trie)')
beam_args.add_argument('--trie_path', default=None, type=str,
help='Path to an (optional) trie dictionary for use with beam search (req\'d with LM)')
beam_args.add_argument('--lm_alpha', default=0.8, type=float, help='Language model weight')
beam_args.add_argument('--lm_beta1', default=1, type=float, help='Language model word bonus (all words)')
beam_args.add_argument('--lm_beta2', default=1, type=float, help='Language model word bonus (IV words)')
beam_args.add_argument('--label_size', default=0, type=int, help='Label selection size controls how many items in '
'each beam are passed through to the beam scorer')
beam_args.add_argument('--label_margin', default=-1, type=float, help='Controls difference between minimal input score '
'for an item to be passed to the beam scorer.')
parser.add_argument('--offsets', dest='offsets', action='store_true', help='Returns time offset information')
args = parser.parse_args()
if __name__ == '__main__':
model = DeepSpeech.load_model(args.model_path, cuda=args.cuda)
model.eval()
labels = DeepSpeech.get_labels(model)
audio_conf = DeepSpeech.get_audio_conf(model)
if args.decoder == "beam":
from decoder import BeamCTCDecoder
decoder = BeamCTCDecoder(labels, beam_width=args.beam_width, top_paths=1, space_index=labels.index(' '),
blank_index=labels.index('_'), lm_path=args.lm_path,
trie_path=args.trie_path, lm_alpha=args.lm_alpha, lm_beta1=args.lm_beta1,
lm_beta2=args.lm_beta2, label_size=args.label_size, label_margin=args.label_margin)
else:
decoder = GreedyDecoder(labels, space_index=labels.index(' '), blank_index=labels.index('_'))
parser = SpectrogramParser(audio_conf, normalize=True)
spect = parser.parse_audio(args.audio_path).contiguous()
spect = spect.view(1, 1, spect.size(0), spect.size(1))
out = model(Variable(spect, volatile=True))
out = out.transpose(0, 1) # TxNxH
decoded_output, decoded_offsets = decoder.decode(out.data)
print(decoded_output[0])
if args.offsets:
print(decoded_offsets[0])