-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathRadioFMDiscriminator_F32.h
304 lines (276 loc) · 11.7 KB
/
RadioFMDiscriminator_F32.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
/*
* RadioFMDiscriminator_F32
* 25 April 2022 Bob Larkin
* With much credit to:
* Chip Audette (OpenAudio) Feb 2017
* Building from AudioFilterFIR from Teensy Audio Library
* (AudioFilterFIR credited to Pete (El Supremo))
* and of course, to PJRC for the Teensy and Teensy Audio Library
*
* Copyright (c) 2022 Bob Larkin
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
/* This consists of a single input at some frequency, such as 10 to 20 kHz and
* an output, such as 0 to 5 kHz. The output level is linearly dependent on the
* frequency of the input sine wave frequency, i.e., it is an FM discriminator.
*
* NOTE: Due to the sample frequencies we are working with, like 44.1 kHz, this
* discriminator cannot handle full FM broadcast bandwidths. It is suitable for
* NBFM as used in communications, marine radio, ham radio, etc.
*
* The output can be FIR filtered using default parameters,
* or using coefficients from an array. A separate single pole de-emphasis filer
* is included that again can be programmed.
*
* Internally, the discriminator uses a pair of single pole BPF that
*
* Status:
*
*
* Functions:
* frequency(float fCenter ) sets the center frequency in Hz, default 15000.
*
* filterOut(float *firCoeffs, uint nFIR, float Kdem) sets output filtering where:
* float32_t* firCoeffs is an array of coefficients
* uint nFIR is the number of coefficients
* float32_t Kdem is the de-emphasis frequency factor, where
* Kdem = 1/(0.5+(tau*fsample)) and tau is the de-emphasis
* time constant, typically 0.0005 second and fsample is
* the sample frequency, typically 44117.
*
* filterIQ(float *fir_IQ_Coeffs, uint nFIR_IQ) sets output filtering where:
* float32_t* fir_IQ_Coeffs is an array of coefficients
* uint nFIR_IQ is the number of coefficients, max 60
*
* setSampleRate_Hz(float32_t _sampleRate_Hz) allows dynamic changing of
* the sample rate (experimental as of May 2020).
*
* Time: For T4.0, 45 microseconds for a block of 128 data points.
*
*/
#ifndef _radioFMDiscriminator_f32_h
#define _radioFMDiscriminator_f32_h
//#include "mathDSP_F32.h"
#include "AudioStream_F32.h"
//#include "arm_math.h"
#define LPF_NONE 0
#define LPF_FIR 1
#define LPF_IIR 2
#define TEST_TIME_FM 0
class RadioFMDiscriminator_F32 : public AudioStream_F32 {
//GUI: inputs:1, outputs:2 //this line used for automatic generation of GUI node
//GUI: shortName: FMDiscriminator
public:
// Default block size and sample rate:
RadioFMDiscriminator_F32(void) : AudioStream_F32(1, inputQueueArray_f32) {
}
// Option of AudioSettings_F32 change to block size and/or sample rate:
RadioFMDiscriminator_F32(const AudioSettings_F32 &settings) : AudioStream_F32(1, inputQueueArray_f32) {
sampleRate_Hz = settings.sample_rate_Hz;
block_size = settings.audio_block_samples;
}
// This sets the parameters of the discriminator. The output LPF, if any,
// must precede this function.
void initializeFMDiscriminator(float32_t _f1, float32_t _f2, float32_t _q1, float32_t _q2) {
f1 = _f1; f2 = _f2;
q1 = _q1; q2 = _q2;
// Design the 2 single pole filters:
setBandpass(coeff_f1BPF, f1, q1);
setBandpass(coeff_f2BPF, f2, q2);
// Initialize BiQuad instances for BPF's (ARM DSP Math Library)
// https://www.keil.com/pack/doc/CMSIS/DSP/html/group__BiquadCascadeDF1.html
// arm_biquad_cascade_df1_init_f32(&biquad_inst, numStagesUsed, &coeff32[0], &StateF32[0])
arm_biquad_cascade_df1_init_f32(&f1BPF_inst, 1, &coeff_f1BPF[0], &state_f1BPF[0]);
arm_biquad_cascade_df1_init_f32(&f2BPF_inst, 1, &coeff_f2BPF[0], &state_f2BPF[0]);
/* The FIR instance setup call
* void arm_fir_init_f32(
* arm_fir_instance_f32* S, points to instance of floating-point FIR filter struct
* uint16_t numTaps, Number of filter coefficients in the filter.
* float32_t* pCoeffs, points to the filter coefficients buffer.
* float32_t* pState, points to the state buffer.
* uint32_t blockSize) Number of samples that are processed per call.
*/
if (fir_Out_Coeffs && outputFilterType == LPF_FIR)
{
arm_fir_init_f32(&FMDet_Out_inst, nFIR_Out, &fir_Out_Coeffs[0],
&State_FIR_Out[0], (uint32_t)block_size);
}
else
{
;
}
// Initialize squelch Input BPF BiQuad instance
arm_biquad_cascade_df1_init_f32(&iirSqIn_inst, 2, pCfSq, &stateSqIn[0]);
}
// Provide for changing to user FIR for discriminator output, (and user de-emphasis)
// This should precede setting discriminator parameters
void filterOutFIR(float32_t *_fir_Out_Coeffs, int _nFIR_Out, float32_t *_State_FIR_Out, float32_t _Kdem) {
if(_fir_Out_Coeffs==NULL)
{
outputFilterType = LPF_NONE;
return;
}
if( _Kdem<0.0001 || _Kdem>1.0 ) {
return;
}
outputFilterType = LPF_FIR;
fir_Out_Coeffs = _fir_Out_Coeffs;
nFIR_Out = _nFIR_Out;
State_FIR_Out = _State_FIR_Out;
Kdem = _Kdem;
OneMinusKdem = 1.0f - Kdem;
}
// This should precede setting discriminator parameters, if used
void filterOutIIR(float32_t _frequency, float32_t _q, float32_t _Kdem) {
if( _frequency < 0.0001f)
{
outputFilterType = LPF_NONE;
return;
}
outputFilterType = LPF_IIR;
setLowpass(coeff_outLPF, _frequency, _q);
arm_biquad_cascade_df1_init_f32(&outLPF_inst, 1, &coeff_outLPF[0], &state_outLPF[0]);
if( _Kdem<0.0001 || _Kdem>1.0 ) {
return;
}
Kdem = _Kdem;
OneMinusKdem = 1.0f - Kdem;
}
// Provide for changing to user supplied BiQuad for Squelch input.
// This should precede setting discriminator parameters, if used
void setSquelchFilter(float* _sqCoeffs) {
if( _sqCoeffs==NULL)
pCfSq = coeffSqIn; // Default filter
else
pCfSq = _sqCoeffs;
}
// The squelch level reads nominally 0.0 to 1.0 where
float getSquelchLevel (void) {
return squelchLevel;
}
// The squelch threshold is nominally 0.7 where
// 0.0 always lets audio through.
void setSquelchThreshold (float _sqTh) {
squelchThreshold = _sqTh;
}
void setSquelchDecay (float _sqDcy) {
gamma = _sqDcy;
alpha = 0.5f*(1.0f - gamma);
}
// This should precede setting discriminator parameters, if used
void setSampleRate_Hz(float32_t _sampleRate_Hz) {
sampleRate_Hz = _sampleRate_Hz;
}
virtual void update(void);
private:
// One input data pointer
audio_block_f32_t *inputQueueArray_f32[1];
float32_t sampleRate_Hz = AUDIO_SAMPLE_RATE_EXACT;
uint16_t block_size = AUDIO_BLOCK_SAMPLES;
/* A pair of single pole BPF for the discriminator:
* Info - The structure from arm_biquad_casd_df1_inst_f32 consists of
* uint32_t numStages;
* const float32_t *pCoeffs; //Points to the array of coefficients, length 5*numStages.
* float32_t *pState; //Points to the array of state variables, length 4*numStages.
*/
float f1, q1, f2, q2;
arm_biquad_casd_df1_inst_f32 f1BPF_inst;
float coeff_f1BPF[5];
float state_f1BPF[4];
arm_biquad_casd_df1_inst_f32 f2BPF_inst;
float coeff_f2BPF[5];
float state_f2BPF[4];
// De-emphasis constant
float32_t Kdem = 0.045334f;
float32_t OneMinusKdem = 0.954666f;
// Save last data point for next update of de-emphasis filter
float32_t dLast = -1.0f;
// The output FIR LPF (optional)
int outputFilterType = LPF_NONE;
// ARM CMSIS FIR filter instances and State vectors
arm_fir_instance_f32 FMDet_Out_inst;
float32_t *State_FIR_Out; // 128+nFIR_Out
uint16_t nFIR_Out;
float32_t* fir_Out_Coeffs = NULL;
float32_t discrOut = 0.0f;
// Output IIR Biquad alternative
arm_biquad_casd_df1_inst_f32 outLPF_inst;
float coeff_outLPF[5];
float state_outLPF[4];
arm_biquad_casd_df1_inst_f32 iirSqIn_inst;
// Default 2 stage Squelch input BiQuad filter, 3000 Hz, 4000 Hz both Q=5
// The -6 dB points are 2680 and 4420 Hz
// The -20 dB points are 2300 and 5300 Hz
float coeffSqIn[10] = {
0.0398031529f, 0.0f, -0.0398031529f, 1.74762569f, -0.92039369f,
0.0511929547f, 0.0f, -0.0511929547f, 1.59770204f, -0.89761409f};
float* pCfSq = coeffSqIn;
float stateSqIn[8];
float squelchThreshold = 0.7f;
float squelchLevel = 1.0f;
float gamma = 0.99;
float alpha = 0.5f*(1.0f - gamma);
#if TEST_TIME_FM
elapsedMicros tElapse;
int32_t iitt = 999000; // count up to a million during startup
#endif
#if 0
/* Info Only, an example FIR filter, include this in INO to use.
* FIR filter designed with http://t-filter.appspot.com
* fs = 44100 Hz, < 3kHz ripple 0.36 dB, >6 kHz, -60 dB, 39 taps
* Corrected to give DC gain = 1.00
*/
float32_t fir_Out39[39] = {
-0.0008908477f, -0.0008401274f, -0.0001837353f, 0.0017556005f,
0.0049353322f, 0.0084952916f, 0.0107668722f, 0.0097441685f,
0.0039877576f, -0.0063455016f, -0.0188069300f, -0.0287453055f,
-0.0303831521f, -0.0186809770f, 0.0085931270f, 0.0493875744f,
0.0971742012f, 0.1423015880f, 0.1745838382f, 0.1863024485f,
0.1745838382f, 0.1423015880f, 0.0971742012f, 0.0493875744f,
0.0085931270f, -0.0186809770f, -0.0303831521f, -0.0287453055f,
-0.0188069300f, -0.0063455016f, 0.0039877576f, 0.0097441685f,
0.0107668722f, 0.0084952916f, 0.0049353322f, 0.0017556005f,
-0.0001837353f, -0.0008401274f, -0.0008908477f };
#endif
// Unity gain BPF Biquad, CMSIS format (not Matlab)
void setBandpass(float32_t* pCoeff, float32_t frequency, float32_t q) {
float32_t w0 = 2.0f*3.141592654f*frequency/sampleRate_Hz;
float32_t alpha = sin(w0)/(2.0f*q);
float32_t scale = 1.0f/(1.0f + alpha);
/* b0 */ *(pCoeff+0) = alpha*scale;
/* b1 */ *(pCoeff+1) = 0.0f;
/* b2 */ *(pCoeff+2) = (-alpha)*scale;
/* a1 */ *(pCoeff+3) = -(-2.0f*cos(w0))*scale;
/* a2 */ *(pCoeff+4) = -(1.0f - alpha)*scale;
}
// Unity gain LPF, CMSIS format
void setLowpass(float32_t* pCoeff, float32_t frequency, float32_t q) {
float32_t w0 = frequency*(2.0f*3.141592654f / sampleRate_Hz);
float32_t alpha = sin(w0) / ((double)q*2.0f);
float32_t cosW0 = cos(w0);
float32_t scale = 1.0f/(1.0f+alpha); // which is equal to 1.0f / a0
/* b0 */ *(pCoeff+0) = ((1.0f - cosW0) / 2.0f)*scale;
/* b1 */ *(pCoeff+1) = (1.0f - cosW0)*scale;
/* b2 */ *(pCoeff+2) = *(pCoeff+0);
/* a1 */ *(pCoeff+3) = -(-2.0f*cosW0)*scale;
/* a2 */ *(pCoeff+4) = -(1.0f - alpha)*scale;
}
};
#endif