forked from kohya-ss/sd-scripts
-
Notifications
You must be signed in to change notification settings - Fork 0
/
sdxl_train_textual_inversion.py
138 lines (105 loc) · 5.19 KB
/
sdxl_train_textual_inversion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import argparse
import os
import regex
import torch
from library.device_utils import init_ipex
init_ipex()
from library import sdxl_model_util, sdxl_train_util, train_util
import train_textual_inversion
class SdxlTextualInversionTrainer(train_textual_inversion.TextualInversionTrainer):
def __init__(self):
super().__init__()
self.vae_scale_factor = sdxl_model_util.VAE_SCALE_FACTOR
self.is_sdxl = True
def assert_extra_args(self, args, train_dataset_group):
super().assert_extra_args(args, train_dataset_group)
sdxl_train_util.verify_sdxl_training_args(args, supportTextEncoderCaching=False)
train_dataset_group.verify_bucket_reso_steps(32)
def load_target_model(self, args, weight_dtype, accelerator):
(
load_stable_diffusion_format,
text_encoder1,
text_encoder2,
vae,
unet,
logit_scale,
ckpt_info,
) = sdxl_train_util.load_target_model(args, accelerator, sdxl_model_util.MODEL_VERSION_SDXL_BASE_V1_0, weight_dtype)
self.load_stable_diffusion_format = load_stable_diffusion_format
self.logit_scale = logit_scale
self.ckpt_info = ckpt_info
return sdxl_model_util.MODEL_VERSION_SDXL_BASE_V1_0, [text_encoder1, text_encoder2], vae, unet
def load_tokenizer(self, args):
tokenizer = sdxl_train_util.load_tokenizers(args)
return tokenizer
def get_text_cond(self, args, accelerator, batch, tokenizers, text_encoders, weight_dtype):
input_ids1 = batch["input_ids"]
input_ids2 = batch["input_ids2"]
with torch.enable_grad():
input_ids1 = input_ids1.to(accelerator.device)
input_ids2 = input_ids2.to(accelerator.device)
encoder_hidden_states1, encoder_hidden_states2, pool2 = train_util.get_hidden_states_sdxl(
args.max_token_length,
input_ids1,
input_ids2,
tokenizers[0],
tokenizers[1],
text_encoders[0],
text_encoders[1],
None if not args.full_fp16 else weight_dtype,
accelerator=accelerator,
)
return encoder_hidden_states1, encoder_hidden_states2, pool2
def call_unet(self, args, accelerator, unet, noisy_latents, timesteps, text_conds, batch, weight_dtype):
noisy_latents = noisy_latents.to(weight_dtype) # TODO check why noisy_latents is not weight_dtype
# get size embeddings
orig_size = batch["original_sizes_hw"]
crop_size = batch["crop_top_lefts"]
target_size = batch["target_sizes_hw"]
embs = sdxl_train_util.get_size_embeddings(orig_size, crop_size, target_size, accelerator.device).to(weight_dtype)
# concat embeddings
encoder_hidden_states1, encoder_hidden_states2, pool2 = text_conds
vector_embedding = torch.cat([pool2, embs], dim=1).to(weight_dtype)
text_embedding = torch.cat([encoder_hidden_states1, encoder_hidden_states2], dim=2).to(weight_dtype)
noise_pred = unet(noisy_latents, timesteps, text_embedding, vector_embedding)
return noise_pred
def sample_images(self, accelerator, args, epoch, global_step, device, vae, tokenizer, text_encoder, unet, prompt_replacement):
sdxl_train_util.sample_images(
accelerator, args, epoch, global_step, device, vae, tokenizer, text_encoder, unet, prompt_replacement
)
def save_weights(self, file, updated_embs, save_dtype, metadata):
state_dict = {"clip_l": updated_embs[0], "clip_g": updated_embs[1]}
if save_dtype is not None:
for key in list(state_dict.keys()):
v = state_dict[key]
v = v.detach().clone().to("cpu").to(save_dtype)
state_dict[key] = v
if os.path.splitext(file)[1] == ".safetensors":
from safetensors.torch import save_file
save_file(state_dict, file, metadata)
else:
torch.save(state_dict, file)
def load_weights(self, file):
if os.path.splitext(file)[1] == ".safetensors":
from safetensors.torch import load_file
data = load_file(file)
else:
data = torch.load(file, map_location="cpu")
emb_l = data.get("clip_l", None) # ViT-L text encoder 1
emb_g = data.get("clip_g", None) # BiG-G text encoder 2
assert (
emb_l is not None or emb_g is not None
), f"weight file does not contains weights for text encoder 1 or 2 / 重みファイルにテキストエンコーダー1または2の重みが含まれていません: {file}"
return [emb_l, emb_g]
def setup_parser() -> argparse.ArgumentParser:
parser = train_textual_inversion.setup_parser()
# don't add sdxl_train_util.add_sdxl_training_arguments(parser): because it only adds text encoder caching
# sdxl_train_util.add_sdxl_training_arguments(parser)
return parser
if __name__ == "__main__":
parser = setup_parser()
args = parser.parse_args()
train_util.verify_command_line_training_args(args)
args = train_util.read_config_from_file(args, parser)
trainer = SdxlTextualInversionTrainer()
trainer.train(args)