forked from rgrosse/compositional_structure_search
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsynthetic_experiments.py
323 lines (259 loc) · 11.5 KB
/
synthetic_experiments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
import argparse
import collections
import numpy as np
nax = np.newaxis
import os
import StringIO
import sys
import config
import experiments
import observations
import presentation
from utils import misc, storage
NUM_ROWS = 200
NUM_COLS = 200
NUM_COMPONENTS = 10
DEFAULT_SEARCH_DEPTH = 3
DEFAULT_PREFIX = 'synthetic'
def generate_ar(nrows, ncols, a):
X = np.zeros((nrows, ncols))
X[0,:] = np.random.normal(size=ncols)
for i in range(1, nrows):
X[i,:] = a * X[i-1,:] + np.random.normal(0., np.sqrt(1-a**2), size=ncols)
return X
def generate_data(data_str, nrows, ncols, ncomp, return_components=False):
IBP_ALPHA = 2.
pi_crp = np.ones(ncomp) / ncomp
pi_ibp = np.ones(ncomp) * IBP_ALPHA / ncomp
if data_str[-1] == 'T':
data_str = data_str[:-1]
transpose = True
nrows, ncols = ncols, nrows
else:
transpose = False
if data_str == 'pmf':
U = np.random.normal(0., 1., size=(nrows, ncomp))
V = np.random.normal(0., 1., size=(ncomp, ncols))
data = np.dot(U, V)
components = (U, V)
elif data_str == 'mog':
U = np.random.multinomial(1, pi_crp, size=nrows)
V = np.random.normal(0., 1., size=(ncomp, ncols))
data = np.dot(U, V)
components = (U, V)
elif data_str == 'ibp':
U = np.random.binomial(1, pi_ibp[nax,:], size=(nrows, ncomp))
V = np.random.normal(0., 1., size=(ncomp, ncols))
data = np.dot(U, V)
components = (U, V)
elif data_str == 'sparse':
Z = np.random.normal(0., 1., size=(nrows, ncomp))
U = np.random.normal(0., np.exp(Z))
V = np.random.normal(0., 1., size=(ncomp, ncols))
data = np.dot(U, V)
components = (U, V)
elif data_str == 'gsm':
U_inner = np.random.normal(0., 1., size=(nrows, 1))
V_inner = np.random.normal(0., 1., size=(1, ncomp))
Z = np.random.normal(U_inner * V_inner, 1.)
#Z = 2. * Z / np.sqrt(np.mean(Z**2))
U = np.random.normal(0., np.exp(Z))
V = np.random.normal(0., 1., size=(ncomp, ncols))
data = np.dot(U, V)
components = (U, V)
elif data_str == 'irm':
U = np.random.multinomial(1, pi_crp, size=nrows)
R = np.random.normal(0., 1., size=(ncomp, ncomp))
V = np.random.multinomial(1, pi_crp, size=ncols).T
data = np.dot(np.dot(U, R), V)
components = (U, R, V)
elif data_str == 'bmf':
U = np.random.binomial(1, pi_ibp[nax,:], size=(nrows, ncomp))
R = np.random.normal(0., 1., size=(ncomp, ncomp))
V = np.random.binomial(1, pi_ibp[nax,:], size=(ncols, ncomp)).T
data = np.dot(np.dot(U, R), V)
components = (U, R, V)
elif data_str == 'mgb':
U = np.random.multinomial(1, pi_crp, size=nrows)
R = np.random.normal(0., 1., size=(ncomp, ncomp))
V = np.random.binomial(1, pi_ibp[nax,:], size=(ncols, ncomp)).T
data = np.dot(np.dot(U, R), V)
components = (U, R, V)
elif data_str == 'chain':
data = generate_ar(nrows, ncols, 0.9)
components = (data)
elif data_str == 'kf':
U = generate_ar(nrows, ncomp, 0.9)
V = np.random.normal(size=(ncomp, ncols))
data = np.dot(U, V)
components = (U, V)
elif data_str == 'bctf':
temp1, (U1, V1) = generate_data('mog', nrows, ncols, ncomp, True)
F1 = np.random.normal(temp1, 1.)
temp2, (U2, V2) = generate_data('mog', nrows, ncols, ncomp, True)
F2 = np.random.normal(temp2, 1.)
data = np.dot(F1, F2.T)
components = (U1, V1, F1, U2, V2, F2)
data /= np.std(data)
if transpose:
data = data.T
if return_components:
return data, components
else:
return data
NOISE_STR_VALUES = ['0.1', '1.0', '3.0', '10.0']
ALL_MODELS = ['pmf', 'mog', 'ibp', 'chain', 'irm', 'bmf', 'kf', 'bctf', 'sparse', 'gsm']
def experiment_name(prefix, noise_str, model):
return '%s_%s_%s' % (prefix, noise_str, model)
def all_experiment_names(prefix):
return [experiment_name(prefix, noise_str, model)
for noise_str in NOISE_STR_VALUES
for model in ALL_MODELS
]
def load_params(prefix):
expt_name = all_experiment_names(prefix)[0]
return storage.load(experiments.params_file(expt_name))
def initial_samples_jobs(prefix, level):
return reduce(list.__add__, [experiments.initial_samples_jobs(name, level)
for name in all_experiment_names(prefix)])
def initial_samples_key(prefix, level):
return '%s_init_%d' % (prefix, level)
def evaluation_jobs(prefix, level):
return reduce(list.__add__, [experiments.evaluation_jobs(name, level)
for name in all_experiment_names(prefix)])
def evaluation_key(prefix, level):
return '%s_eval_%d' % (prefix, level)
def final_model_jobs(prefix):
return reduce(list.__add__, [experiments.final_model_jobs(name)
for name in all_experiment_names(prefix)])
def final_model_key(prefix):
return '%s_final' % prefix
def report_dir(prefix):
return os.path.join(config.REPORT_PATH, prefix)
def report_file(prefix):
return os.path.join(report_dir(prefix), 'results.txt')
def init_experiment(prefix, debug, search_depth=3):
experiments.check_required_directories()
for noise_str in NOISE_STR_VALUES:
for model in ALL_MODELS:
name = experiment_name(prefix, noise_str, model)
if debug:
params = experiments.QuickParams(search_depth=search_depth)
else:
params = experiments.SmallParams(search_depth=search_depth)
data, components = generate_data(model, NUM_ROWS, NUM_COLS, NUM_COMPONENTS, True)
clean_data_matrix = observations.DataMatrix.from_real_values(data)
noise_var = float(noise_str)
noisy_data = np.random.normal(data, np.sqrt(noise_var))
data_matrix = observations.DataMatrix.from_real_values(noisy_data)
experiments.init_experiment(name, data_matrix, params, components,
clean_data_matrix=clean_data_matrix)
def init_level(prefix, level):
for name in all_experiment_names(prefix):
experiments.init_level(name, level)
def collect_scores_for_level(prefix, level):
for name in all_experiment_names(prefix):
experiments.collect_scores_for_level(name, level)
def run_everything(prefix, args):
params = load_params(prefix)
init_level(prefix, 1)
experiments.run_jobs(evaluation_jobs(prefix, 1), args, evaluation_key(prefix, 1))
collect_scores_for_level(prefix, 1)
for level in range(2, params.search_depth + 1):
init_level(prefix, level)
experiments.run_jobs(initial_samples_jobs(prefix, level), args, initial_samples_key(prefix, level))
experiments.run_jobs(evaluation_jobs(prefix, level), args, evaluation_key(prefix, level))
collect_scores_for_level(prefix, level)
experiments.run_jobs(final_model_jobs(prefix), args, final_model_key(prefix))
def print_failures(prefix, outfile=sys.stdout):
params = load_params(prefix)
failures = []
for level in range(1, params.search_depth + 1):
ok_counts = collections.defaultdict(int)
fail_counts = collections.defaultdict(int)
for expt_name in all_experiment_names(prefix):
for _, structure in storage.load(experiments.structures_file(expt_name, level)):
for split_id in range(params.num_splits):
for sample_id in range(params.num_samples):
ok = False
fname = experiments.scores_file(expt_name, level, structure, split_id, sample_id)
if storage.exists(fname):
row_loglik, col_loglik = storage.load(fname)
if np.all(np.isfinite(row_loglik)) and np.all(np.isfinite(col_loglik)):
ok = True
if ok:
ok_counts[structure] += 1
else:
fail_counts[structure] += 1
for structure in fail_counts:
if ok_counts[structure] > 0:
failures.append(presentation.Failure(structure, level, False))
else:
failures.append(presentation.Failure(structure, level, True))
presentation.print_failed_structures(failures, outfile)
def print_learned_structures(prefix, outfile=sys.stdout):
results = []
for expt_name in all_experiment_names(prefix):
structure, _ = experiments.final_structure(expt_name)
results.append(presentation.FinalResult(expt_name, structure))
presentation.print_learned_structures(results, outfile)
def summarize_results(prefix, outfile=sys.stdout):
print_learned_structures(prefix, outfile)
print_failures(prefix, outfile)
def save_report(name, email=None):
# write to stdout
summarize_results(name)
# write to report file
if not os.path.exists(report_dir(name)):
os.mkdir(report_dir(name))
summarize_results(name, open(report_file(name), 'w'))
if email is not None and email.find('@') != -1:
header = 'experiment %s finished' % name
buff = StringIO.StringIO()
print >> buff, 'These results are best viewed in a monospace font.'
print >> buff
summarize_results(name, buff)
body = buff.getvalue()
buff.close()
misc.send_email(header, body, email)
if __name__ == '__main__':
command = sys.argv[1]
parser = argparse.ArgumentParser()
parser.add_argument('command')
if command == 'generate':
parser.add_argument('--debug', action='store_true', default=False)
parser.add_argument('--search_depth', type=int, default=DEFAULT_SEARCH_DEPTH)
parser.add_argument('--prefix', type=str, default=DEFAULT_PREFIX)
args = parser.parse_args()
init_experiment(args.prefix, args.debug, args.search_depth)
elif command == 'init':
parser.add_argument('level', type=int)
parser.add_argument('--prefix', type=str, default=DEFAULT_PREFIX)
experiments.add_scheduler_args(parser)
args = parser.parse_args()
init_level(args.prefix, args.level)
if args.level > 1:
experiments.run_jobs(initial_samples_jobs(args.prefix, args.level), args,
initial_samples_key(args.prefix, args.level))
elif command == 'eval':
parser.add_argument('level', type=int)
parser.add_argument('--prefix', type=str, default=DEFAULT_PREFIX)
experiments.add_scheduler_args(parser)
args = parser.parse_args()
experiments.run_jobs(evaluation_jobs(args.prefix, args.level), args,
evaluation_key(args.prefix, args.level))
collect_scores_for_level(args.prefix, args.level)
elif command == 'final':
parser.add_argument('level', type=int)
parser.add_argument('--prefix', type=str, default=DEFAULT_PREFIX)
experiments.add_scheduler_args(parser)
args = parser.parse_args()
experiments.run_jobs(final_model_jobs(args.prefix, args.level), args,
final_model_key(args.prefix))
elif command == 'everything':
parser.add_argument('--prefix', type=str, default=DEFAULT_PREFIX)
experiments.add_scheduler_args(parser)
args = parser.parse_args()
run_everything(args.prefix, args)
else:
raise RuntimeError('Unknown command: %s' % command)