-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTraining_3.py
637 lines (522 loc) · 25.9 KB
/
Training_3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
# coding: utf-8
# In[1]:
##Import libraries
import torch
import pandas as pd
import torch.nn as nn
import torch.nn.functional as F
import torch
import numpy as np
import random
import time
import datetime
import os
import sys
import csv
from torch import backends
from beautifultable import BeautifulTable
from torch.autograd import Variable
from torch.utils.data.sampler import SubsetRandomSampler
from torch.utils.data import Dataset, DataLoader
from sklearn.metrics import precision_recall_fscore_support, accuracy_score
# In[25]:
##SETTINGS
doTrain = True
doEval = True
nfold = 10 #number of folds to train
fold_offset = 1
lr=0.01 #learning rate
batch_size = 32
val_split = .1 #trainset percentage allocated for devset
test_val_split = .1 #trainset percentage allocated for test_val set (i.e. the test set of known patients)
#cwd = os.getcwd()
cwd = "../All_csv_subjects/Biphase_subjects/min-max/windows_60/tr-False_sliding_20_c-True/folds/subject1"
prefix_train = 'TrainFold'
prefix_test = 'TestFold'
spw=60 #samples per window
nmuscles=10 #initial number of muscles acquired
#Enable/Disable shuffle on trainset/testset
shuffle_train = False
shuffle_test= False
#Delete electrogonio signals
exclude_features=True
#Only use electrogonio signals
include_only_features=False
#Features to selected/deselected for input to the networks
features_select = [9,10] #1 to 4
#Select which models to run. Insert comma separated values into 'model_select' var.
#List. 0:'FF', 1:'FC2', 2:'FC2DP', 3:'FC3', 4:'FC3dp', 5:'Conv1d', 6:'MultiConv1d'
#e.g: model_select = [0,4,6] to select FF,FC3dp,MultiConv1d
model_lst = ['FF','FC2','FC2DP','FC3','FC3dp','Conv1d','MultiConv1d',
'MultiConv1d_2','MultiConv1d_3', 'MultiConv1d_4', 'MultiConv1d_5',
'FF2', 'CNN1', 'FF3', 'FF4', 'CNN2', 'FF5', 'FF6', 'CNN3', 'CNN1-FF5', 'CNN1-2','CNN1-1', 'CNN1-3', 'CNN_w60']
model_select = [23,13]
#Early stop settings
maxepoch = 100
maxpatience = 10
use_cuda = False
use_gputil = False
cuda_device = None
# In[3]:
#CUDA
if use_gputil and torch.cuda.is_available():
import GPUtil
# Get the first available GPU
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
try:
deviceIDs = GPUtil.getAvailable(order='memory', limit=1, maxLoad=100, maxMemory=20) # return a list of available gpus
except:
print('GPU not compatible with NVIDIA-SMI')
else:
os.environ["CUDA_VISIBLE_DEVICES"] = str(deviceIDs[0])
ttens = torch.tensor(np.array([[1, 2, 3], [4, 5, 6]]))
ttens = ttens.cuda()
# In[4]:
#torch.cuda.is_available()
# In[5]:
#Seeds
def setSeeds(seed):
torch.manual_seed(seed)
random.seed(seed)
np.random.seed(seed)
setSeeds(0)
# In[6]:
#Prints header of beautifultable report for each fold
def header(model_list,nmodel,nfold,traindataset,testdataset):
print('+++++++++++++++++++++++++++++++++++++++++++++++++')
print('MODEL: '+model_list[nmodel])
print('Fold: '+str(nfold))
print('+++++++++++++++++++++++++++++++++++++++++++++++++\n\n')
shape = list(traindataset.x_data.shape)
print('Trainset fold'+str(i)+' shape: '+str(shape[0])+'x'+str((shape[1]+1)))
shape = list(testdataset.x_data.shape)
print('Testset fold'+str(i)+' shape: '+str(shape[0])+'x'+str((shape[1]+1))+'\n')
# In[7]:
#Prints actual beautifultable for each fold
def table(model_list,nmodel,accuracies,precisions,recalls,f1_scores,accuracies_dev):
table = BeautifulTable()
table.column_headers = ["{}".format(model_list[nmodel]), "Avg", "Stdev"]
table.append_row(["Accuracy",round(np.average(accuracies),3),round(np.std(accuracies),3)])
table.append_row(["Precision",round(np.average(precisions),3),round(np.std(precisions),3)])
table.append_row(["Recall",round(np.average(recalls),3),round(np.std(recalls),3)])
table.append_row(["F1_score",round(np.average(f1_scores),3),round(np.std(f1_scores),3)])
table.append_row(["Accuracy_dev",round(np.average(accuracies_dev),3),round(np.std(accuracies_dev),3)])
print(table)
# In[8]:
#Saves best model state on disk for each fold
def save_checkpoint (state, is_best, filename, logfile):
if is_best:
msg = "=> Saving a new best. "+'Epoch: '+str(state['epoch'])
print (msg)
logfile.write(msg + "\n")
torch.save(state, filename)
else:
msg = "=> Validation accuracy did not improve. "+'Epoch: '+str(state['epoch'])
print (msg)
logfile.write(msg + "\n")
# In[9]:
#Compute sklearn metrics: Recall, Precision, F1-score
def pre_rec (loader, model, positiveLabel):
y_true = np.array([])
y_pred = np.array([])
with torch.no_grad():
for i,data in enumerate (loader,0):
inputs, labels = data
y_true = np.append(y_true,labels.cpu())
outputs = model(inputs)
outputs[outputs>=0.5] = 1
outputs[outputs<0.5] = 0
y_pred = np.append(y_pred,outputs.cpu())
y_true = np.where(y_true==positiveLabel,0,1)
y_pred = np.where(y_pred==positiveLabel,0,1)
precision, recall, f1_score, _ = precision_recall_fscore_support(y_true, y_pred, average='binary')
return round(precision*100,3), round(recall*100,3), round(f1_score*100,3)
# In[10]:
#Calculates model accuracy. Predicted vs Correct.
def accuracy (loader, model):
total=0
correct=0
with torch.no_grad():
for i, data in enumerate(loader, 0):
inputs, labels = data
outputs = model(inputs)
outputs[outputs>=0.5] = 1
outputs[outputs<0.5] = 0
total += labels.size(0)
correct += (outputs == labels).sum().item()
return round((100 * correct / total),3)
# In[11]:
#Arrays to store metrics
accs = np.empty([nfold,1])
accs_test_val = np.empty([nfold,1])
precisions_0_U = np.empty([nfold,1])
recalls_0_U = np.empty([nfold,1])
f1_scores_0_U = np.empty([nfold,1])
precisions_1_U = np.empty([nfold,1])
recalls_1_U = np.empty([nfold,1])
f1_scores_1_U = np.empty([nfold,1])
precisions_0_L = np.empty([nfold,1])
recalls_0_L = np.empty([nfold,1])
f1_scores_0_L = np.empty([nfold,1])
precisions_1_L = np.empty([nfold,1])
recalls_1_L = np.empty([nfold,1])
f1_scores_1_L = np.empty([nfold,1])
accs_dev = np.empty([nfold,1])
times = np.empty([nfold,1])
#Calculate avg metrics on folds
def averages (vals):
avgs = []
for val in vals:
avgs.append(round(np.average(val),3))
return avgs
#Calculate std metrics on folds
def stds (vals):
stds = []
for val in vals:
stds.append(round(np.std(val),3))
return stds
# In[12]:
#Shuffle
def dev_shuffle (shuffle_train,shuffle_test,val_split,traindataset,testdataset):
train_size = len(traindataset)
test_size = len(testdataset)
train_indices = list(range(train_size))
test_indices = list(range(test_size))
split = int(np.floor(val_split * train_size))
if shuffle_train:
np.random.shuffle(train_indices)
if shuffle_test:
np.random.shuffle(test_indices)
train_indices, dev_indices = train_indices[split:], train_indices[:split]
# Samplers
tr_sampler = SubsetRandomSampler(train_indices)
d_sampler = SubsetRandomSampler(dev_indices)
te_sampler = SubsetRandomSampler(test_indices)
return tr_sampler,d_sampler,te_sampler
def data_split (shuffle_train,shuffle_test,val_split,test_val_split,traindataset,testdataset):
train_size = len(traindataset)
test_size = len(testdataset)
train_indices = list(range(train_size))
test_indices = list(range(test_size))
test_val_split = int(np.floor(test_val_split * train_size))
dev_split = int(np.floor(val_split * (train_size-test_val_split) + test_val_split))
if shuffle_train:
np.random.shuffle(train_indices)
if shuffle_test:
np.random.shuffle(test_indices)
train_indices, dev_indices, test_val_indices = train_indices[dev_split:], train_indices[test_val_split:dev_split], train_indices[:test_val_split]
# Samplers
tr_sampler = SubsetRandomSampler(train_indices)
d_sampler = SubsetRandomSampler(dev_indices)
tv_sampler = SubsetRandomSampler(test_val_indices)
te_sampler = SubsetRandomSampler(test_indices)
return tr_sampler,d_sampler,tv_sampler,te_sampler
# In[13]:
'''
test_val_split = 0.1
train_size = 100
val_split = 0.1
test_val_split = int(np.floor(test_val_split * train_size))
dev_split = int(np.floor(val_split * (train_size-test_val_split) + test_val_split))
print(str(test_val_split) + " " + str(dev_split))
train_indices = []
for i in range(0,100):
train_indices.append(i + 1)
print(train_indices)
train_indices, dev_indices, test_val_indices = train_indices[dev_split:], train_indices[test_val_split:dev_split], train_indices[:test_val_split]
print("Train: " + str(train_indices))
print("Test Val: " + str(test_val_indices))
print("Dev: " + str(dev_indices))
'''
# In[14]:
#Loads and appends all folds all at once
trainfolds = []
testfolds = []
#l=pd.read_csv(cwd +'/list.csv',sep=',',header=None,dtype=np.int32)
col_select = np.array([])
#This is an hack to test smaller windows
for i in range (spw*nmuscles,200):
col_select = np.append(col_select,i)
for i in range (0,spw*nmuscles,nmuscles):
for muscle in features_select:
col_select = np.append(col_select,muscle -1 + i)
cols=np.arange(0,spw*nmuscles+1)
if exclude_features & (not include_only_features): #delete gonio
for j in range(fold_offset,fold_offset + nfold):
print("Loading fold " + str(j))
traindata = pd.read_table(os.path.join(cwd, prefix_train + str(j)+'.csv'),sep=',',header=None,dtype=np.float32,usecols=[i for i in cols if i not in col_select.astype(int)])
trainfolds.append(traindata)
testdata = pd.read_table(os.path.join(cwd, prefix_test + str(j)+'.csv'),sep=',',header=None,dtype=np.float32, usecols=[i for i in cols if i not in col_select.astype(int)])
testfolds.append(testdata)
elif include_only_features & (not exclude_features): #only gonio
for j in range(fold_offset, fold_offset + nfold):
print("Loading fold " + str(j))
traindata = pd.read_table(os.path.join(cwd, prefix_train + str(j)+'.csv'),sep=',',header=None,dtype=np.float32,usecols=[i for i in cols if i in col_select.astype(int)])
testdata = pd.read_table(os.path.join(cwd, prefix_test + str(j)+'.csv'),sep=',',header=None,dtype=np.float32, usecols=[i for i in cols if i in col_select.astype(int)])
trainfolds.append(traindata)
testfolds.append(testdata)
elif (not include_only_features) & (not exclude_features):
for j in range(fold_offset,fold_offset + nfold):
print("Loading fold " + str(j))
traindata = pd.read_csv(os.path.join(cwd, prefix_train + str(j)+'.csv'),sep=',',header=None,dtype=np.float32)
testdata = pd.read_csv(os.path.join(cwd, prefix_test + str(j)+'.csv'),sep=',',header=None,dtype=np.float32)
trainfolds.append(traindata)
testfolds.append(testdata)
else:
raise ValueError('use_gonio and del_gonio cannot be both True')
print(len(traindata.columns))
print(nmuscles)
# In[26]:
nmuscles=int((len(traindata.columns)-1)/spw) #used for layer dimensions and stride CNNs
# In[27]:
import models
from models import *
models._spw = spw
models._nmuscles = nmuscles
models._batch_size = batch_size
# In[28]:
print(models._nmuscles)
#import models
#from models import *
#TEST DIMENSIONS
#models.nmuscles = nmuscles
def testdimensions():
model = Model23()
print(model)
x = torch.randn(32,1,480)
model.test_dim(x)
#testdimensions()
# In[29]:
fieldnames = ['Fold','Acc_L', 'Acc_U',
'R_0_U','R_1_U',
'R_0_L','R_1_L',
'Stop_epoch','Accuracy_dev'] #coloumn names report FOLD CSV
torch.backends.cudnn.benchmark = True
#TRAINING LOOP
def train_test():
for k in model_select:
table = BeautifulTable()
avgtable = BeautifulTable()
fieldnames1 = [model_lst[k],'Avg','Std_dev'] #column names report GLOBAL CSV
folder = os.path.join(cwd,'Report_'+str(model_lst[k]))
if not os.path.exists(folder):
os.mkdir(folder)
logfilepath = os.path.join(folder,'log.txt')
logfile = open(logfilepath,"w")
with open(os.path.join(folder,'Report_folds.csv'),'w') as f_fold, open(os.path.join(folder,'Report_global.csv'),'w') as f_global:
writer = csv.DictWriter(f_fold, fieldnames = fieldnames)
writer1 = csv.DictWriter(f_global, fieldnames = fieldnames1)
writer.writeheader()
writer1.writeheader()
t0 = 0
t1 = 0
for i in range(1,nfold+1):
t0 = time.time()
setSeeds(0)
class Traindataset(Dataset):
def __init__(self):
self.data=trainfolds[i-1]
self.x_data=torch.from_numpy(np.asarray(self.data.iloc[:, 0:-1]))
self.len=self.data.shape[0]
self.y_data = torch.from_numpy(np.asarray(self.data.iloc[:, [-1]]))
if (use_cuda):
self.x_data = self.x_data.cuda()
self.y_data = self.y_data.cuda()
def __getitem__(self, index):
return self.x_data[index], self.y_data[index]
def __len__(self):
return self.len
class Testdataset(Dataset):
def __init__(self):
self.data=testfolds[i-1]
self.x_data=torch.from_numpy(np.asarray(self.data.iloc[:, 0:-1]))
self.len=self.data.shape[0]
self.y_data = torch.from_numpy(np.asarray(self.data.iloc[:, [-1]]))
if (use_cuda):
self.x_data = self.x_data.cuda()
self.y_data = self.y_data.cuda()
def __getitem__(self, index):
return self.x_data[index], self.y_data[index]
def __len__(self):
return self.len
traindataset = Traindataset()
testdataset = Testdataset()
header(model_lst,k,i,traindataset,testdataset)
#train_sampler,dev_sampler,test_sampler=dev_shuffle(shuffle_train,shuffle_test,val_split,traindataset,testdataset)
train_sampler,dev_sampler,test_val_sampler,test_sampler=data_split(shuffle_train,shuffle_test,val_split,test_val_split,traindataset,testdataset)
#loaders
train_loader = torch.utils.data.DataLoader(traindataset, batch_size=batch_size,
sampler=train_sampler,drop_last=True)
test_val_loader = torch.utils.data.DataLoader(traindataset, batch_size=batch_size,
sampler=test_val_sampler,drop_last=True)
dev_loader = torch.utils.data.DataLoader(traindataset, batch_size=batch_size,
sampler=dev_sampler,drop_last=True)
test_loader = torch.utils.data.DataLoader(testdataset, batch_size=batch_size,
sampler=test_sampler,drop_last=True)
modelClass = "Model" + str(k)
model = eval(modelClass)()
if (use_cuda):
model = model.cuda()
if doTrain:
criterion = nn.BCELoss(size_average=True)
optimizer = torch.optim.SGD(model.parameters(), lr)
msg = 'Accuracy on test set before training: '+str(accuracy(test_loader, model))+'\n'
print(msg)
logfile.write(msg + "\n")
#EARLY STOP
epoch = 0
patience = 0
best_acc_dev=0
while (epoch<maxepoch and patience < maxpatience):
running_loss = 0.0
for l, data in enumerate(train_loader, 0):
inputs, labels = data
if use_cuda:
inputs, labels = inputs.cuda(), labels.cuda()
inputs, labels = Variable(inputs), Variable(labels)
y_pred = model(inputs)
if use_cuda:
y_pred = y_pred.cuda()
loss = criterion(y_pred, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
running_loss += loss.item()
#print accuracy ever l mini-batches
if l % 2000 == 1999:
msg = '[%d, %5d] loss: %.3f' %(epoch + 1, l + 1, running_loss / 999)
print(msg)
logfile.write(msg + "\n")
running_loss = 0.0
#msg = 'Accuracy on dev set:' + str(accuracy(dev_loader))
#print(msg)
#logfile.write(msg + "\n")
accdev = (accuracy(dev_loader, model))
msg = 'Accuracy on dev set:' + str(accdev)
print(msg)
logfile.write(msg + "\n")
is_best = bool(accdev > best_acc_dev)
best_acc_dev = (max(accdev, best_acc_dev))
save_checkpoint({
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'best_acc_dev': best_acc_dev
}, is_best,os.path.join(folder,'F'+str(i)+'best.pth.tar'), logfile)
if is_best:
patience=0
else:
patience = patience+1
epoch = epoch+1
logfile.flush()
if doEval:
if use_cuda:
state = torch.load(os.path.join(folder,'F'+str(i)+'best.pth.tar'))
else:
state = torch.load(os.path.join(folder,'F'+str(i)+'best.pth.tar'), map_location=lambda storage, loc: storage)
stop_epoch = state['epoch']
model.load_state_dict(state['state_dict'])
if not use_cuda:
model.cpu()
accuracy_dev = state['best_acc_dev']
model.eval()
acctest = (accuracy(test_loader, model))
acctest_val = (accuracy(test_val_loader, model))
accs[i-1] = acctest
accs_test_val[i-1] = acctest_val
precision_0_U,recall_0_U,f1_score_0_U = pre_rec(test_loader, model, 0.0)
precisions_0_U[i-1] = precision_0_U
recalls_0_U[i-1] = recall_0_U
f1_scores_0_U[i-1] = f1_score_0_U
precision_1_U,recall_1_U,f1_score_1_U = pre_rec(test_loader, model, 1.0)
precisions_1_U[i-1] = precision_1_U
recalls_1_U[i-1] = recall_1_U
f1_scores_1_U[i-1] = f1_score_1_U
precision_0_L,recall_0_L,f1_score_0_L = pre_rec(test_val_loader, model, 0.0)
precisions_0_L[i-1] = precision_0_L
recalls_0_L[i-1] = recall_0_L
f1_scores_0_L[i-1] = f1_score_0_L
precision_1_L,recall_1_L,f1_score_1_L = pre_rec(test_val_loader, model, 1.0)
precisions_1_L[i-1] = precision_1_L
recalls_1_L[i-1] = recall_1_L
f1_scores_1_L[i-1] = f1_score_1_L
accs_dev[i-1] = accuracy_dev
writer.writerow({'Fold': i,'Acc_L': acctest_val, 'Acc_U': acctest,
#'P_0_U': precision_0_U,'R_0_U': recall_0_U,'F1_0_U': f1_score_0_U,
'R_0_U': recall_0_U,
#'P_1_U': precision_1_U,'R_1_U': recall_1_U,'F1_1_U': f1_score_1_U,
'R_1_U': recall_1_U,
#'P_0_L': precision_0_L,'R_0_L': recall_0_L,'F1_0_L': f1_score_0_L,
'R_0_L': recall_0_L,
#'P_1_L': precision_1_L,'R_1_L': recall_1_L,'F1_1_L': f1_score_1_L,
'R_1_L': recall_1_L,
'Stop_epoch': stop_epoch,'Accuracy_dev': accuracy_dev})
table.column_headers = fieldnames
table.append_row([i,acctest_val,acctest,
#precision_0_U,recall_0_U,f1_score_0_U,
recall_0_U,
#precision_1_U,recall_1_U,f1_score_1_U,
recall_1_U,
#precision_0_L,recall_0_L,f1_score_0_L,
recall_0_L,
#precision_1_L,recall_1_L,f1_score_1_L,
recall_1_L,
stop_epoch,accuracy_dev])
print(table)
print('----------------------------------------------------------------------')
logfile.write(str(table) + "\n----------------------------------------------------------------------\n")
t1 = time.time()
times[i-1] = int(t1-t0)
duration = str(datetime.timedelta(seconds=np.sum(times)))
writer.writerow({})
writer.writerow({'Fold': 'Elapsed time: '+duration})
avg_acc_test_val = round(np.average(accs_test_val),3)
std_acc_test_val = round(np.std(accs_test_val),3)
avg_acc_test_val,avg_a,avg_p_0_U,avg_r_0_U,avg_f_0_U,avg_p_1_U,avg_r_1_U,avg_f_1_U,avg_p_0_L,avg_r_0_L,avg_f_0_L,avg_p_1_L,avg_r_1_L,avg_f_1_L,avg_a_d=averages([accs_test_val,accs,precisions_0_U,recalls_0_U,f1_scores_0_U,precisions_1_U,recalls_1_U,f1_scores_1_U,precisions_0_L,recalls_0_L,f1_scores_0_L,precisions_1_L,recalls_1_L,f1_scores_1_L,accs_dev])
std_acc_test_val,std_a,std_p_0_U,std_r_0_U,std_f_0_U,std_p_1_U,std_r_1_U,std_f_1_U,std_p_0_L,std_r_0_L,std_f_0_L,std_p_1_L,std_r_1_L,std_f_1_L,std_a_d=stds([accs_test_val,accs,precisions_0_U,recalls_0_U,f1_scores_0_U,precisions_1_U,recalls_1_U,f1_scores_1_U,precisions_0_L,recalls_0_L,f1_scores_0_L,precisions_1_L,recalls_1_L,f1_scores_1_L,accs_dev])
writer1.writerow({model_lst[k]: 'Acc_U','Avg': avg_a,'Std_dev': std_acc_test_val})
writer1.writerow({model_lst[k]: 'Acc_L','Avg': avg_acc_test_val,'Std_dev': std_a})
writer1.writerow({model_lst[k]: 'P_0_U','Avg': avg_p_0_U ,'Std_dev': std_p_0_U})
writer1.writerow({model_lst[k]: 'R_0_U','Avg': avg_r_0_U,'Std_dev': std_r_0_U})
writer1.writerow({model_lst[k]: 'F1_0_U','Avg': avg_f_0_U,'Std_dev': std_f_0_U})
writer1.writerow({model_lst[k]: 'P_1_U','Avg': avg_p_1_U,'Std_dev': std_p_1_U})
writer1.writerow({model_lst[k]: 'R_1_U','Avg': avg_r_1_U,'Std_dev': std_r_1_U})
writer1.writerow({model_lst[k]: 'F1_1_U','Avg': avg_f_1_U,'Std_dev': std_f_1_U})
writer1.writerow({model_lst[k]: 'P_0_L','Avg': avg_p_0_L,'Std_dev': std_p_0_L})
writer1.writerow({model_lst[k]: 'R_0_L','Avg': avg_r_0_L,'Std_dev': std_r_0_L})
writer1.writerow({model_lst[k]: 'F1_0_L','Avg': avg_f_0_L,'Std_dev': std_f_0_L})
writer1.writerow({model_lst[k]: 'P_1_L','Avg': avg_p_1_L,'Std_dev': std_p_1_L})
writer1.writerow({model_lst[k]: 'R_1_L','Avg': avg_r_1_L,'Std_dev': std_r_1_L})
writer1.writerow({model_lst[k]: 'F1_1_L','Avg': avg_f_1_L,'Std_dev': std_f_1_L})
writer1.writerow({model_lst[k]: 'Acc_dev','Avg': avg_a_d,'Std_dev': std_a_d})
writer1.writerow({})
writer1.writerow({model_lst[k]: 'Elapsed time: '+duration})
avgtable.column_headers = fieldnames1
avgtable.append_row(['Acc_U',avg_a,std_a])
avgtable.append_row(['Acc_L',avg_acc_test_val,std_acc_test_val])
avgtable.append_row(['P_0_U',avg_p_0_U,std_p_0_U])
avgtable.append_row(['R_0_U',avg_r_0_U,std_r_0_U])
avgtable.append_row(['F1_0_U',avg_f_0_U,std_f_0_U])
avgtable.append_row(['P_1_U',avg_p_1_U,std_p_1_U])
avgtable.append_row(['R_1_U',avg_r_1_U,std_r_1_U])
avgtable.append_row(['F1_1_U',avg_f_1_U,std_f_1_U])
avgtable.append_row(['P_0_L',avg_p_0_L,std_p_0_L])
avgtable.append_row(['R_0_L',avg_r_0_L,std_r_0_L])
avgtable.append_row(['F1_0_L',avg_f_0_L,std_f_0_L])
avgtable.append_row(['P_1_L',avg_p_1_L,std_p_1_L])
avgtable.append_row(['R_1_L',avg_r_1_L,std_r_1_L])
avgtable.append_row(['F1_1_L',avg_f_1_L,std_f_1_L])
avgtable.append_row(['Accuracy_dev',avg_a_d,std_a_d])
print(avgtable)
logfile.write(str(avgtable) + "\n")
msg = 'Elapsed time: '+ duration + '\n\n'
print(msg)
logfile.write(msg )
logfile.close()
# In[30]:
nmuscles=int((len(traindata.columns)-1)/spw)
if use_cuda and not use_gputil and cuda_device!=None and torch.cuda.is_available():
with torch.cuda.device(cuda_device):
train_test()
else:
train_test()
# In[ ]: