forked from ussaema/SeqCapsGAN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathresize.py
33 lines (27 loc) · 1.13 KB
/
resize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
from PIL import Image
from core.utils import resize_image
import os
import argparse
parser = argparse.ArgumentParser(description='Resize images to 224x224')
parser.add_argument('--input_folder_dir', type=str, default='./images/train2014/')
parser.add_argument('--output_folder_dir', type=str, default='./images/train2014_resized/')
args = parser.parse_args()
def main():
splits = ['val']
for split in splits:
folder = args.input_folder_dir
resized_folder = args.output_folder_dir
if not os.path.exists(resized_folder):
os.makedirs(resized_folder)
print('Start resizing %s images.' %split)
image_files = os.listdir(folder)
num_images = len(image_files)
for i, image_file in enumerate(image_files):
with open(os.path.join(folder, image_file), 'r+b') as f:
with Image.open(f) as image:
image = resize_image(image)
image.save(os.path.join(resized_folder, image_file), image.format)
if i % 100 == 0:
print('Resized images: %d/%d' %(i, num_images))
if __name__ == '__main__':
main()