Skip to content

Latest commit

 

History

History
43 lines (36 loc) · 3.35 KB

File metadata and controls

43 lines (36 loc) · 3.35 KB

Deep Reinforcement Learning Hands-On

Code samples for Deep Reinforcement Learning Hands-On book

Deep Reinforcement Learning Hands-On

This is the code repository for Deep Reinforcement Learning Hands-On, published by Packt. It contains all the supporting project files necessary to work through the book from start to finish.

About the Book

Recent developments in reinforcement learning (RL), combined with deep learning (DL), have seen unprecedented progress made towards training agents to solve complex problems in a human-like way. Google’s use of algorithms to play and defeat the well-known Atari arcade games has propelled the field to prominence, and researchers are generating new ideas at a rapid pace.

Deep Reinforcement Learning Hands-On is a comprehensive guide to the very latest DL tools and their limitations. You will evaluate methods including Cross-entropy and policy gradients, before applying them to real-world environments. Take on both the Atari set of virtual games and family favorites such as Connect4. The book provides an introduction to the basics of RL, giving you the know-how to code intelligent learning agents to take on a formidable array of practical tasks. Discover how to implement Q-learning on ‘grid world’ environments, teach your agent to buy and trade stocks, and find out how natural language models are driving the boom in chatbots.

Instructions and Navigation

All of the code is organized into folders. Each folder starts with a number followed by the application name. For example, Chapter02. The code will look like the following:

def get_actions(self):
 return [0, 1]

Related Products