Skip to content

Latest commit

 

History

History
53 lines (29 loc) · 1.35 KB

README.md

File metadata and controls

53 lines (29 loc) · 1.35 KB

Using Multiple Instance Learning for Explainable Solar Flare Prediction

This github repository provides data, code and some results for the paper:

Getting the data

The dataset is available via Zenodo:

IRIS Multiple Instance Learning Dataset (9.4 Gb, Numpy npz-Format)

Running the code

The code was run on Python 3.6.9 and with the package versions listed in the requirements.txt file. To run it, adhere to the following steps:

  1. Create a virtual environment and install the required packages, e.g. with virtualenv:
virtualenv -p python3 irismil_env
source irismil_venv/bin/activate
pip install -r requirements.txt
  1. Run the model_runner.py script with
python model_runner.py <model_name> <parameter_value> <runs_per_fold>

e.g. to run an ibMIL model with r=3 and ten runs for each of the three CV-folds:

python model_runner.py ibMIL 3 10

Videos (10 September 2014 Flare)

Pre-flare phase only:

pf0910_sji_overplot.mp4

Whole observation:

fl0910_sji_overplot.mp4