-
Notifications
You must be signed in to change notification settings - Fork 0
/
label_image_get_label_women.py
180 lines (153 loc) · 5.85 KB
/
label_image_get_label_women.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import numpy as np
import tensorflow as tf
import Image
import os
import csv
os.environ["CUDA_VISIBLE_DEVICES"]="1"
def load_graph(model_file):
graph = tf.Graph()
graph_def = tf.GraphDef()
with open(model_file, "rb") as f:
graph_def.ParseFromString(f.read())
with graph.as_default():
tf.import_graph_def(graph_def)
return graph
def read_tensor_from_image_file(file_name,
input_height=299,
input_width=299,
input_mean=0,
input_std=255):
input_name = "file_reader"
output_name = "normalized"
file_reader = tf.read_file(file_name, input_name)
if file_name.endswith(".png"):
image_reader = tf.image.decode_png(
file_reader, channels=3, name="png_reader")
elif file_name.endswith(".gif"):
image_reader = tf.squeeze(
tf.image.decode_gif(file_reader, name="gif_reader"))
elif file_name.endswith(".bmp"):
image_reader = tf.image.decode_bmp(file_reader, name="bmp_reader")
else:
image_reader = tf.image.decode_jpeg(
file_reader, channels=3, name="jpeg_reader")
float_caster = tf.cast(image_reader, tf.float32)
dims_expander = tf.expand_dims(float_caster, 0)
resized = tf.image.resize_bilinear(dims_expander, [input_height, input_width])
normalized = tf.divide(tf.subtract(resized, [input_mean]), [input_std])
sess = tf.Session()
result = sess.run(normalized)
return result
def load_labels(label_file):
label = []
proto_as_ascii_lines = tf.gfile.GFile(label_file).readlines()
for l in proto_as_ascii_lines:
label.append(l.rstrip())
return label
if __name__ == "__main__":
file_name = "168623717_498022.jpg"
model_file = \
"/home/scopeserver/RaidDisk/DeepLearning/mwang/tensorflow/tensorflow/examples/image_retraining/output_graph.pb"
label_file = "/home/scopeserver/RaidDisk/DeepLearning/mwang/tensorflow/tensorflow/examples/image_retraining/output_labels.txt"
input_height = 299
input_width = 299
input_mean = 0
input_std = 255.0
input_layer = "Placeholder"
output_layer = "final_result"
imagelist = "/home/scopeserver/RaidDisk/DeepLearning/mwang/tensorflow/tensorflow/models/image/imagenet/trend_women_imagepart.txt"
#imagelist = './test_list.txt'
parser = argparse.ArgumentParser()
parser.add_argument("--image", help="image to be processed")
parser.add_argument("--graph", help="graph/model to be executed")
parser.add_argument("--labels", help="name of file containing labels")
parser.add_argument("--input_height", type=int, help="input height")
parser.add_argument("--input_width", type=int, help="input width")
parser.add_argument("--input_mean", type=int, help="input mean")
parser.add_argument("--input_std", type=int, help="input std")
parser.add_argument("--input_layer", help="Placeholder")
parser.add_argument("--output_layer", help="final_result")
args = parser.parse_args()
if args.graph:
model_file = args.graph
if args.image:
file_name = args.image
if args.labels:
label_file = args.labels
if args.input_height:
input_height = args.input_height
if args.input_width:
input_width = args.input_width
if args.input_mean:
input_mean = args.input_mean
if args.input_std:
input_std = args.input_std
if args.input_layer:
input_layer = args.input_layer
if args.output_layer:
output_layer = args.output_layer
graph = load_graph(model_file)
labels = load_labels(label_file)
'''
t = read_tensor_from_image_file(
file_name,
input_height=input_height,
input_width=input_width,
input_mean=input_mean,
input_std=input_std)
'''
input_name = "import/" + input_layer
output_name = "import/" + output_layer
input_operation = graph.get_operation_by_name(input_name)
output_operation = graph.get_operation_by_name(output_name)
'''
with tf.Session(graph=graph) as sess:
results = sess.run(output_operation.outputs[0], {
input_operation.outputs[0]: t
})
results = np.squeeze(results)
'''
sess = tf.Session(graph=graph)
label_prob=[]
with open(imagelist) as f:
for filename in f:
img = Image.open(filename.strip())
if img.mode != 'RGB':
img = img.convert('RGB')
longersize = max(img.size)
background = Image.new('RGB', (longersize, longersize), "white")
background.paste(img, (int((longersize-img.size[0])/2), int((longersize-img.size[1])/2)))
img = background
img = img.resize((input_height, input_width), Image.BICUBIC)
#img.save('test.jpg')
img_tesnor = np.array(img)/input_std
img_tesnor = np.expand_dims(img_tesnor, axis=0)
results = sess.run(output_operation.outputs[0], {input_operation.outputs[0]: img_tesnor})
results = np.squeeze(results)
top_k = results.argsort()[-1:][::-1]
index=top_k[0]
label_prob.append([labels[index],str(results[index])])
print (labels[index], results[index])
with open("women_label_prob.csv",'w') as t:
fcsv=csv.writer(t)
fcsv.writerows(label_prob)
#for i in top_k:
# print(labels[i], results[i])