-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathPolRing.mag
487 lines (417 loc) · 13.9 KB
/
PolRing.mag
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
import "Utils.mag": not_implemented;
// base type
declare type PGGRngPol[PGGPol];
declare attributes PGGRngPol: base_ring;
declare attributes PGGPol: parent, coefficients, roots, num_roots, has_root, factorization, factor_degrees, extension, degree, splitting_field;
// base wrapping type
declare type PGGRngPolWrap[PGGPolWrap]: PGGRngPol;
declare attributes PGGRngPolWrap: actual;
declare type PGGPolWrap: PGGPol;
declare attributes PGGPolWrap: actual;
// standard p-adics (FldPad)
declare type PGGRngPolStd[PGGPolStd]: PGGRngPolWrap;
declare type PGGPolStd: PGGPolWrap;
// group representation
declare type PGGRngPolGrp[PGGPolGrp]: PGGRngPol;
declare type PGGPolGrp: PGGPol;
declare attributes PGGPolGrp: factor_fields, galois_group_quo;
intrinsic PolynomialRing(F :: PGGFld) -> PGGRngPol
{The univariate polynomial ring of F.}
if not assigned F`polynomial_ring then
F`polynomial_ring := _PolynomialRing(F);
end if;
return F`polynomial_ring;
end intrinsic;
intrinsic _PolynomialRing(F :: PGGFld) -> PGGRngPol
{"}
not_implemented("_PolynomialRing:", Type(F));
end intrinsic;
intrinsic _PolynomialRing(F :: PGGFldStd) -> PGGRngPolStd
{"}
R := New(PGGRngPolStd);
R`base_ring := F;
return R;
end intrinsic;
intrinsic _PolynomialRing(F :: PGGFldGrp) -> PGGRngPolGrp
{"}
R := New(PGGRngPolGrp);
R`base_ring := F;
return R;
end intrinsic;
intrinsic BaseRing(R :: PGGRngPol) -> PGGFld
{The base ring of R.}
return R`base_ring;
end intrinsic;
intrinsic Parent(f :: PGGPol) -> PGGRngPol
{The parent ring of f.}
return f`parent;
end intrinsic;
intrinsic BaseRing(f :: PGGPol) -> PGGFld
{The base ring of f.}
return BaseRing(Parent(f));
end intrinsic;
intrinsic 'eq'(R1 :: PGGRngPol, R2 :: PGGRngPol) -> BoolElt
{Equality.}
return IsIdentical(R1, R2);
end intrinsic;
intrinsic 'eq'(R1 :: PGGRngPolStd, R2 :: PGGRngPolStd) -> BoolElt
{"}
return BaseRing(R1) eq BaseRing(R2);
end intrinsic;
intrinsic 'eq'(R1 :: PGGRngPolGrp, R2 :: PGGRngPolGrp) -> BoolElt
{"}
return BaseRing(R1) eq BaseRing(R2);
end intrinsic;
intrinsic Print(R :: PGGRngPolStd, lvl :: MonStgElt)
{Print.}
printf "%O", Actual(R), lvl;
end intrinsic;
intrinsic Print(f :: PGGPolStd)
{"}
printf "%o", f`actual;
end intrinsic;
intrinsic Actual(R :: PGGRngPolStd) -> RngUPol
{The actual ring.}
if not assigned R`actual then
R`actual := PolynomialRing(Actual(BaseRing(R)));
end if;
return R`actual;
end intrinsic;
intrinsic Element(R :: PGGRngPolStd, xf :: RngUPolElt[FldPad]) -> PGGPolStd
{An element of R.}
require Parent(xf) eq Actual(R): "xf must be an element of Actual(R)";
f := New(PGGPolStd);
f`actual := xf;
f`parent := R;
return f;
end intrinsic;
intrinsic IsCoercible(R :: PGGRngPol, X) -> BoolElt, .
{True if X is coercible into R.}
return false, "wrong type";
end intrinsic;
intrinsic IsCoercible(R :: PGGRngPol, X :: PGGPol) -> BoolElt, .
{"}
if Parent(X) eq R then
return true, X;
else
return false, "wrong parent";
end if;
end intrinsic;
intrinsic IsCoercible(R :: PGGRngPolStd, X) -> BoolElt, .
{"}
ok, Y := IsCoercible(Actual(R), X);
if ok then
return true, Element(R, Y);
else
return false, "not coercible to the actual ring" cat (assigned Y select ": " cat Y else "");
end if;
end intrinsic;
intrinsic IsCoercible(R :: PGGRngPolStd, X :: PGGPolStd) -> BoolElt, .
{"}
if Parent(X) eq R then
return true, X;
else
return IsCoercible(R, Actual(X));
end if;
end intrinsic;
intrinsic IsCoercible(R :: PGGRngPolStd, X :: []) -> BoolElt, .
{"}
ok, Y := CanChangeUniverse(X, BaseRing(R));
if ok then
return true, Element(R, Actual(R)![Actual(x) : x in Y]);
else
return false, "not coercible to base ring" cat (assigned Y select ": " cat Y else "");
end if;
end intrinsic;
intrinsic IsCoercible(R :: PGGRngPolGrp, X :: PGGPolGrp) -> BoolElt, .
{"}
F := BaseRing(X);
E := BaseRing(R);
if Universe(F) eq Universe(E) then
if Parent(X) eq R then
return true, X;
elif F subset E then
_, q := GaloisGroup(X);
G := E`group @ q;
return true, &*[R| DefiningPolynomial(Field(Universe(F), Stabilizer(G, Rep(o)) @@ q), E) : o in Orbits(G)];
end if;
end if;
return false, _;
end intrinsic;
intrinsic PGG_Polynomial(f) -> PGGPol
{Converts f to a PGGPol.}
error "not coercible to a PGGPol:", Type(f);
end intrinsic;
intrinsic PGG_Polynomial(f :: PGGPol) -> PGGPol
{"}
return f;
end intrinsic;
intrinsic PGG_Polynomial(f :: RngUPolElt[FldPad]) -> PGGPol
{"}
return PolynomialRing(PGGFldStd_Make(BaseRing(f))) ! f;
end intrinsic;
intrinsic Actual(f :: PGGPolStd : FixPr:=false) -> RngUPolElt
{The current actual value of f.}
xf := f`actual;
if FixPr and Precision(BaseRing(xf)) eq Infinity() then
pr := Max([1] cat [IsWeaklyZero(c) select 0 else Precision(c) : c in Coefficients(xf)]);
xf := PolynomialRing(ChangePrecision(BaseRing(xf), pr)) ! xf;
end if;
return xf;
end intrinsic;
intrinsic Degree(f :: PGGPol) -> RngIntElt
{Degree.}
if not assigned f`degree then
f`degree := _Degree(f);
end if;
return f`degree;
end intrinsic;
intrinsic _Degree(f :: PGGPol) -> RngIntElt
{"}
not_implemented("_Degree:", Type(f));
end intrinsic;
intrinsic _Degree(f :: PGGPolStd) -> RngIntElt
{Degree.}
return Degree(Actual(f));
end intrinsic;
intrinsic _Degree(f :: PGGPolGrp) -> RngIntElt
{"}
return &+[Integers()| Degree(E, BaseRing(f)) : E in f`factor_fields];
end intrinsic;
intrinsic Coefficients(f :: PGGPol) -> []
{The coefficients of f.}
if not assigned f`coefficients then
f`coefficients := _Coefficients(f);
end if;
return f`coefficients;
end intrinsic;
intrinsic _Coefficients(f :: PGGPol) -> []
{"}
not_implemented("_Coefficients:", Type(f));
end intrinsic;
intrinsic _Coefficients(f :: PGGPolStd) -> []
{"}
return [BaseRing(f)| c : c in Coefficients(Actual(f))];
end intrinsic;
intrinsic Roots(f :: PGGPol) -> []
{The roots of f, as a sequence. Assumes f is squarefree, and so does not return multiplicities.}
if not assigned f`roots then
f`roots := _Roots(f);
end if;
return f`roots;
end intrinsic;
intrinsic _Roots(f :: PGGPol) -> []
{"}
not_implemented("_Roots:", Type(f));
end intrinsic;
intrinsic _Roots(f :: PGGPolStd) -> []
{"}
return [BaseRing(f)| root : root in PGG_Roots(Actual(f))];
end intrinsic;
intrinsic NumRoots(f :: PGGPol) -> RngIntElt
{The number of roots of f.}
if not assigned f`num_roots then
f`num_roots := _NumRoots(f);
end if;
return f`num_roots;
end intrinsic;
intrinsic _NumRoots(f :: PGGPol) -> RngIntElt
{"}
return #Roots(f);
end intrinsic;
intrinsic _NumRoots(f :: PGGPolStd) -> RngIntElt
{"}
if assigned f`roots then
return #f`roots;
else
return #PGG_Roots(Actual(f) : Lift:=false);
end if;
end intrinsic;
intrinsic _NumRoots(f :: PGGPolGrp) -> RngIntElt
{"}
return Multiplicity(FactorDegrees(f), 1);
end intrinsic;
intrinsic HasRoot(f :: PGGPol) -> BoolElt
{True if f has a root.}
if not assigned f`has_root then
f`has_root := _HasRoot(f);
end if;
return f`has_root;
end intrinsic;
intrinsic _HasRoot(f :: PGGPol) -> BoolElt
{"}
return NumRoots(f) ne 0;
end intrinsic;
CERT := recformat<F, E, Pi, Rho, Extension>;
intrinsic Factorization(f :: PGGPol : Extensions:=false) -> [], []
{The factorization of f, as a sequence of irreducible factors. Assumes f is squarefree, and so does not return multiplicities.}
if (not assigned f`factorization) or (Extensions and not f`factorization[1]) then
f`factorization := [*Extensions, facs, certs*] where facs, certs := _Factorization(f : Extensions:=Extensions);
end if;
return f`factorization[2], f`factorization[3];
end intrinsic;
intrinsic _Factorization(f :: PGGPol : Extensions:=false) -> [], []
{"}
not_implemented("_Factorization:", Type(f));
end intrinsic;
intrinsic _Factorization(f :: PGGPolStd : Extensions:=false) -> [], []
{"}
facs0, certs0 := PGG_Factorization(Actual(f) : Extensions:=Extensions);
facs := [Parent(f)| fac : fac in facs0];
certs := [];
for c0 in certs0 do
c := rec<CERT | F:=c0`F, E:=c0`E, Pi:=Parent(f)!c0`Pi, Rho:=Parent(f)!c0`Rho>;
if Extensions then
c`Extension := PGGFldStd_Make(c0`Extension, BaseRing(f));
end if;
Append(~certs, c);
end for;
if Extensions then
for i in [1..#facs] do
facs[i]`extension := certs[i]`Extension;
end for;
end if;
return facs, certs;
end intrinsic;
intrinsic FactorDegrees(f :: PGGPol) -> {**}
{The degrees of factors of f.}
if not assigned f`factor_degrees then
f`factor_degrees := _FactorDegrees(f);
end if;
return f`factor_degrees;
end intrinsic;
intrinsic _FactorDegrees(f :: PGGPol) -> {**}
{"}
return {*Integers()| Degree(fac) : fac in Factorization(f)*};
end intrinsic;
intrinsic _FactorDegrees(f :: PGGPolStd) -> {**}
{"}
if assigned f`factorization then
return {*Degree(fac) : fac in f`factorization*};
else
return {*Degree(fac) : fac in PGG_Factorization(Actual(f) : Lift:=false)*};
end if;
end intrinsic;
intrinsic NumFactors(f :: PGGPol) -> RngIntElt
{The number of factors of f.}
return #FactorDegrees(f);
end intrinsic;
intrinsic IsIrreducible(f :: PGGPol) -> RngIntElt
{True if f is irreducible.}
return NumFactors(f) eq 1;
end intrinsic;
intrinsic Extension(f :: PGGPol) -> PGGFld
{The extension defined by f, which must be irreducible.}
if not assigned f`extension then
f`extension := _Extension(f);
end if;
return f`extension;
end intrinsic;
intrinsic _Extension(f :: PGGPol) -> PGGFld
{"}
facs, certs := Factorization(f : Extensions);
require #facs eq 1: "f must be irreducible";
return certs[1]`Extension;
end intrinsic;
intrinsic ChangeRing(f :: PGGPol, F :: PGGFld) -> PGGPol
{Changes the base ring of f to F.}
return PolynomialRing(F) ! f;
end intrinsic;
intrinsic IsEisenstein(f :: PGGPol) -> BoolElt
{True if f is Eisenstein.}
d := Degree(f);
return d ge 1 and ValuationEq(Coefficient(f,0),1) and ValuationEq(Coefficient(f,d),0) and forall{i : i in [1..d-1] | ValuationGe(Coefficient(f,i),1)};
end intrinsic;
intrinsic IsInertial(f :: PGGPol) -> BoolElt
{True if f is inertial.}
d := Degree(f);
return d ge 1 and ValuationEq(Coefficient(f,0),0) and ValuationEq(Coefficient(f,d),0) and forall{i : i in [1..d-1] | ValuationGe(Coefficient(f,i),0)} and IsIrreducible(Polynomial([c@m : c in Coefficients(f)] where _,m:=ResidueClassField(BaseRing(f))));
end intrinsic;
intrinsic Coefficient(f :: PGGPol, i :: RngIntElt) -> PGGFldElt
{The ith coefficient of f.}
require i ge 0: "i must be at least 0";
if i le Degree(f) then
return Coefficients(f)[i+1];
else
return BaseRing(f) ! 0;
end if;
end intrinsic;
intrinsic IsWeaklyEqual(f :: PGGPolStd, g :: PGGPolStd) -> BoolElt
{True if f and g are weakly equal.}
return IsWeaklyEqual(Actual(f), Actual(g));
end intrinsic;
intrinsic Polynomial(cs :: [PGGFldElt]) -> PGGPol
{The polynomial with the given coefficients.}
return PolynomialRing(Universe(cs)) ! cs;
end intrinsic;
intrinsic '.'(R :: PGGRngPol, n :: RngIntElt) -> PGGPol
{The nth generator of R.}
require n eq 1: "n must be 1";
return R![0,1];
end intrinsic;
intrinsic Print(f :: PGGPolGrp)
{Print.}
printf "Polynomial of degree %o", Degree(f);
end intrinsic;
intrinsic SplittingField(f :: PGGPolGrp) -> PGGFldGrp
{The splitting field of f.}
if not assigned f`splitting_field then
F := BaseRing(f);
f`splitting_field := &join[Universe(F)| NormalClosure(E,F) : E in f`factor_fields];
end if;
return f`splitting_field;
end intrinsic;
intrinsic GaloisGroup(f :: PGGPolGrp) -> GrpPerm, Map
{The Galois group of f, and the quotient map from the defining group of the base field to it.}
if not assigned f`galois_group_quo then
F := BaseRing(f);
G := F`group;
require Degree(f) gt 0: "must be a non-constant polynomial";
if Degree(f) eq 1 then
A := SymmetricGroup(1);
q := hom<G -> A | [Id(A) : i in [1..Ngens(G)]]>;
else
Hs := [E`group : E in f`factor_fields];
qs := [CosetAction(G,H) : H in Hs];
As := [Codomain(q) : q in qs];
A0, incls, projs := DirectProduct(As);
genimgs := [&*[incls[j](qs[j](g)) : j in [1..#Hs]] where g:=G.i : i in [1..Ngens(G)]];
A := sub<A0 | genimgs>;
q := hom<G -> A | genimgs>;
end if;
f`galois_group_quo := q;
end if;
return Codomain(f`galois_group_quo), f`galois_group_quo;
end intrinsic;
intrinsic '&*'(fs :: [PGGPolGrp]) -> PGGPolGrp
{Product.}
g := New(PGGPolGrp);
g`parent := Universe(fs);
g`factor_fields := &cat[f`factor_fields : f in fs];
g`factorization := [*true, &cat[f`factorization[2] : f in fs], &cat[f`factorization[3] : f in fs]*];
return g;
end intrinsic;
intrinsic '*'(f :: PGGPolGrp, g :: PGGPolGrp) -> PGGPolGrp
{Multiply.}
require Parent(f) eq Parent(g): "different parents";
return &*[f,g];
end intrinsic;
intrinsic DefiningPolynomial(E :: PGGFldGrp, F :: PGGFldGrp) -> PGGPolGrp
{The defining polynomial of E over F.}
f := New(PGGPolGrp);
f`parent := PolynomialRing(F);
f`factor_fields := [E];
f`factorization := [*true,[f],[rec<CERT | Extension:=E>]*];
return f;
end intrinsic;
intrinsic DefiningPolynomial(F :: PGGFldGrp) -> PGGPolGrp
{The defining polynomial of F over the base field.}
if not assigned F`defining_polynomial then
F`defining_polynomial := DefiningPolynomial(F, BaseField(F));
end if;
return F`defining_polynomial;
end intrinsic;
intrinsic AssignNames(~R :: PGGRngPolStd, names :: [MonStgElt])
{Assigns names to generators of R.}
AssignNames(~R`actual, names);
end intrinsic;