-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathUtils.mag
1046 lines (967 loc) · 33 KB
/
Utils.mag
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
Z := IntegerRing();
Q := RationalField();
function not_implemented(msg, ...)
error "not implemented: " cat Join([Sprintf("%o", x) : x in msg], " ");
end function;
function precision_error()
error "precision error";
end function;
function user_error(msg, ...)
error "error: " cat Join([Sprintf("%o", x) : x in msg], " ");
end function;
procedure isort_by(~xs, key)
keys := [key(xs[i]) : i in [1..#xs]];
Sort(~keys, ~permutation);
xs := [xs[i^permutation] : i in [1..#xs]];
end procedure;
function sort_by(xs, key)
isort_by(~xs, key);
return xs;
end function;
function group_by(xs, key)
A := AssociativeArray();
for x in xs do
k := key(x);
if IsDefined(A, k) then
Append(~A[k], x);
else
A[k] := [x];
end if;
end for;
end function;
function enumerate(xs)
return [<xs[i], i> : i in [1..#xs] | IsDefined(xs, i)];
end function;
function fldpad_eltseq(x)
if AbsolutePrecision(x) eq Infinity() then
assert IsWeaklyZero(x);
return [BaseField(Parent(x))| 0 : i in [1..Degree(Parent(x))]];
else
return Eltseq(x);
end if;
end function;
function is_any_coercible(coercers, x)
for i in [1..#coercers] do
ok, y := coercers[i](x);
if ok then
return true, i, y;
end if;
end for;
return false, _, _;
end function;
function all_coercible(dflts, coercers, xs)
assert #dflts eq #coercers;
dflts := [* d : d in dflts *];
for x in xs do
ok, i, y := is_any_coercible(coercers, x);
if ok then
dflts[i] := y;
else
return false, _;
end if;
end for;
return true, dflts;
end function;
function the(xs)
assert #xs eq 1;
return [x : x in xs][1];
end function;
// the roots of f as a sequence (no multiplicities)
// f must be squarefree
function roots(f : Lift:=true)
return PGG_Roots(f : Lift:=Lift);
end function;
// true if f has a root
// f must be squarefree
// also returns a root
function has_root(f)
rs := roots(f);
if #rs eq 0 then
return false, _;
else
return true, rs[1];
end if;
end function;
// the factorization of f as a sequence (no multiplicities)
// f must be squarefree
// also the certificates
function factorization(f : Extensions:=false, Lift:=true)
return PGG_Factorization(f : Extensions:=Extensions, Lift:=Lift);
end function;
function extension(f)
facs, certs := factorization(f : Extensions);
error if #facs gt 1, "expecting at most 1 factor";
return certs[1]`Extension;
end function;
function pol_invmod(g, f)
d := Degree(f);
// rows are coefficients of g^i mod f
M := Matrix([[Coefficient(gg, j) : j in [0..d-1]] where gg := Polynomial([0 : j in [1..i]] cat Coefficients(g)) mod f : i in [0..d-1]]);
// rows are linear combinations of g^i summing to x^j
ok, Minv := IsInvertible(M);
assert ok;
// first row is h(x) so that h(x)g(x)=1 mod f(x)
return Polynomial(Eltseq(Rows(Minv)[1]));
end function;
// the factorization of f into pieces corresponding to the slopes of its newton polygon as a sequence
function newton_polygon_factorization(f : alg:="Hensel")
// special cases
d := Degree(f);
error if d lt 0, "f must be non-zero";
error if IsWeaklyZero(Coefficient(f, d)), "precision error: leading coefficient is weakly zero";
if d eq 0 then
return [];
end if;
case alg:
when "Cheat":
// we cheat and do a full factorization and then aggregate the results
// this will be very inefficient for some polynomials!
facs := factorization(f);
a := AssociativeArray();
for fac in facs do
s := the(Slopes(NewtonPolygon(fac)));
if IsDefined(a, s) then
Append(~a[s], fac);
else
a[s] := [fac];
end if;
end for;
return [&*a[s] : s in Sort([s : s in Keys(a)])];
when "Hensel":
// use Hensel's lemma
R := Parent(f);
K := BaseRing(R);
pr := Precision(K);
assert pr lt Infinity();
np := NewtonPolygon(f);
vs := ChangeUniverse(Vertices(np), car<Z,Z>);
assert #vs ge 2;
assert vs[1][1] eq 0;
assert vs[#vs][1] eq Degree(f);
error if exists{v : v in vs | IsWeaklyZero(Coefficient(f, v[1]))}, "precision error: coefficient weakly zero";
factors := [];
for n in [2..#vs] do
i0, v0 := Explode(vs[n-1]);
i1, v1 := Explode(vs[n]);
width := i1 - i0;
slope := (v1 - v0) / width;
h := -Numerator(slope);
e := Denominator(slope);
g0 := R ! [Coefficient(f, i) / Coefficient(f, i1) : i in [i0..i1]];
g := R ! [IsWeaklyZero(c) select 0 else ChangePrecision(c, pr) : c in Coefficients(g0)];
assert Degree(g) eq width;
assert Valuation(Coefficient(g, 0)) eq v0-v1;
assert Valuation(Coefficient(g, width)) eq 0;
vprint PGG_GaloisGroup, 2: "hensel lifting slope =", slope;
niters := 0;
while true do
niters +:= 1;
if false then
// use arithmetic in R mod g instead of reducing things mod g explicitly
Q := quo<R | g>;
PGG_GlobalTimer_Push("quotrem g");
h, fmodg := Quotrem(f, g);
PGG_GlobalTimer_Swap("gnew");
gnew := g + R!(Q!fmodg/Q!h);
else
PGG_GlobalTimer_Push("quotrem g");
h, fmodg := Quotrem(f, g);
if true then
// use Newton lifting to find hinv = h^-1 mod g after the first iteration
// TODO: even better would be to only do pol_invmod() to limited precision at first, and then do many rounds of Newton lifting
if niters eq 1 then
PGG_GlobalTimer_Swap("invmod g");
hinv := pol_invmod(h, g);
else
PGG_GlobalTimer_Swap("newton lift");
hinv := (hinv * (2 - ((h * hinv) mod g))) mod g;
end if;
else
PGG_GlobalTimer_Swap("invmod g");
hinv := pol_invmod(h, g);
end if;
PGG_GlobalTimer_Swap("mult");
tmp := fmodg * hinv;
PGG_GlobalTimer_Swap("mod g");
tmp := tmp mod g;
PGG_GlobalTimer_Swap("add");
gnew := g + tmp;
end if;
PGG_GlobalTimer_Swap("check");
assert Degree(gnew) eq width;
assert Valuation(Coefficient(g, 0)) eq v0-v1;
assert Valuation(Coefficient(g, width)) eq 0;
delta := g - gnew;
PGG_GlobalTimer_Pop();
if forall{i : i in [0..width] | IsWeaklyZero(Coefficient(delta, i))} then
vprint PGG_GaloisGroup, 2: "f mod g =", fmodg;
Append(~factors, g);
continue n;
else
g := R ! [IsWeaklyZero(c) select 0 else ChangePrecision(c, pr) : c in Coefficients(gnew)];
end if;
end while;
end for;
return factors;
else
error "invalid algorithm:", alg;
end case;
end function;
function multiplicities_to_information(mults)
mults := [m : m in mults | m ne 0];
assert forall{m : m in mults | m gt 0};
assert #mults gt 0;
if #mults eq 1 then
return 0.0;
end if;
total := &+mults;
ans := &+[-p*Log(2,p) where p:=m/total : m in mults];
assert ans gt 0;
return ans;
end function;
function largest_coefficient(x)
if IsPrimeField(Parent(x)) then
return Abs(x);
else
return Max([largest_coefficient(c) : c in Eltseq(x)]);
end if;
end function;
function reduce_coefficients(x, M)
if IsPrimeField(Parent(x)) then
return Parent(x) ! ((Z!x) mod M);
else
return Parent(x) ! [reduce_coefficients(c, M) : c in Eltseq(x)];
end if;
end function;
function startswith(x, y)
if #x ge #y and x[1..#y] eq y then
return true, x[#y+1..#x];
else
return false, _;
end if;
end function;
procedure seq_idiff(~xs, ys)
ys := {y : y in ys};
xs := [xs[i] : i in [1..#xs] | xs[i] notin ys];
end procedure;
// a bound on |f(a_1,...,a_n)| where |a_i| le b.
// f is a RngSLPolElt
function slpol_bound(f, b)
op := Operator(f);
f1, f2 := Operands(f);
case op:
when "var":
return b;
when "const":
return Abs(f1);
when "+", "-":
return slpol_bound(f1, b) + slpol_bound(f2, b);
when "*":
return slpol_bound(f1, b) * slpol_bound(f2, b);
when "^":
return slpol_bound(f1, b) ^ f2;
else
assert false;
end case;
end function;
function permute_seq(g, xs)
d := Degree(Parent(g));
assert d eq #xs;
return [xs[i^g] : i in [1..d]];
end function;
procedure pop_start(~x, ~xs)
assert #xs ne 0;
x := xs[1];
xs := xs[2..#xs];
end procedure;
function polynomial_with_roots(rs)
U := Universe(rs);
R := PolynomialRing(U);
return &*[R| [-r, 1] : r in rs];
end function;
function left_coset_representatives(G, H)
assert H subset G;
cosets, indices := DoubleCosetRepresentatives(G, H, sub<G | Id(G)>);
return cosets;
end function;
function right_coset_representatives(G, H)
assert H subset G;
cosets, indices := DoubleCosetRepresentatives(G, sub<G | Id(G)>, H);
return cosets;
end function;
function is_extension_of(L, K)
if L eq K then
return true, [K];
elif IsPrimeField(L) then
return false, _;
else
ok, twr := is_extension_of(BaseField(L), K);
if ok then
return true, Append(twr, L);
else
return false, _;
end if;
end if;
end function;
function tower(L, K)
ok, twr := is_extension_of(L, K);
assert ok;
return twr;
end function;
function is_in_standard_form(L, K)
t := tower(L, K);
if #t eq 1 then
return true, K;
elif #t eq 2 then
if RamificationDegree(t[2]) gt 1 then
return true, K;
elif InertiaDegree(t[2]) gt 1 then
return true, L;
end if;
elif #t eq 3 then
U := t[2];
if RamificationDegree(L) gt 1 and InertiaDegree(U) gt 1 then
return true, U;
end if;
end if;
return false, _;
end function;
function valuation_eq(c, n)
if Valuation(c) gt n then
return false;
elif IsWeaklyZero(c) then
precision_error();
else
return Valuation(c) eq n;
end if;
end function;
function valuation_ge(c, n)
if Valuation(c) ge n then
return true;
elif IsWeaklyZero(c) then
precision_error();
else
return false;
end if;
end function;
function is_eisenstein(f)
d := Degree(f);
return (d ge 0) and valuation_eq(Coefficient(f, d), 0) and valuation_eq(Coefficient(f, 0), 1) and forall{i : i in [1..d-1] | valuation_ge(Coefficient(f, i), 1)};
end function;
function is_inertial(f)
d := Degree(f);
if exists{c : c in Coefficients(f) | AbsolutePrecision(c) lt 1} then
precision_error();
end if;
return (d ge 1) and valuation_eq(Coefficient(f, d), 0) and valuation_eq(Coefficient(f, 0), 0) and forall{c : c in Coefficients(f) | valuation_ge(c, 0)} and IsIrreducible(Polynomial([c@m : c in Coefficients(f)]) where _,m:=ResidueClassField(Integers(BaseRing(f))));
end function;
function xdiv(x, y)
ok, z := IsDivisibleBy(x, y);
assert ok;
return z;
end function;
// solves S*M=V for S
function solve(M, V)
return V * M^-1;
ok, S := IsSolvable(M, V);
if ok then
return S;
else
return V * M^-1;
end if;
end function;
// given L/K and a sequence pis of elements of L which are uniformizing elements of subextensions K(pis[#pis])/.../K(pis[1]), return this tower from the bottom up
function tower_from_uniformizers(L, K, pis : alg:="LA")
assert Universe(pis) eq L;
assert not IsPrimeField(L);
assert BaseField(L) eq K;
t := [];
K2 := K;
L2 := L;
LtoL2 := map<L -> L2 | x :-> x>;
f := DefiningPolynomial(L);
Lpi := L.1;
for i in [1..#pis] do
PGG_GlobalTimer_Push("minimal polynomial");
pi2 := LtoL2(pis[i]);
m := MinimalPolynomial(pi2, K2);
PGG_GlobalTimer_Swap("factorization");
assert is_eisenstein(m);
d := Degree(m);
n := xdiv(Degree(L2, K2), d);
if d gt 1 then
K2new := ext<K2 | ChangePrecision(m, Precision(K2))>;
case alg:
when "Factorization":
f2 := factorization(ChangeRing(f, K2new))[1];
when "LA":
V := VectorSpace(K2, Degree(L2, K2));
vmap := map<L2 -> V | x :-> V!Eltseq(x), y :-> L2!Eltseq(y)>;
L2pi := LtoL2(Lpi);
vec := vmap(L2pi^n);
mat := Matrix([vmap(L2pi^i * pi2^j) : j in [0..d-1], i in [0..n-1]]);
coeffs := Eltseq(solve(mat, vec));
f2 := Polynomial([K2new| i eq n select 1 else -&+[coeffs[i*d+j+1] * K2new.1^j : j in [0..d-1]] : i in [0..n]]);
else
assert false;
end case;
assert Degree(f2) eq n;
assert is_eisenstein(f2);
L2new := ext<K2new | ChangePrecision(f2, Precision(K2new))>;
LtoL2new := map<L -> L2new | x :-> &+[L2new| L2new.1^(i-1) * cs[i] : i in [1..#cs]] where cs:=Eltseq(x)>;
// rename for iterating
K2 := K2new;
L2 := L2new;
LtoL2 := LtoL2new;
end if;
Append(~t, K2);
PGG_GlobalTimer_Pop();
end for;
return t;
end function;
function ramification_tower(L, K)
ok, U := is_in_standard_form(L, K);
assert ok;
if L eq K then
return [K];
elif L eq U then
return [K, U];
elif U eq K then
f := DefiningPolynomial(L);
R := Parent(f);
assert is_eisenstein(f);
pi := L.1;
assert IsWeaklyZero(Evaluate(f, pi));
r := Evaluate(f, PolynomialRing(L) ! [pi, 1]);
assert IsWeaklyZero(Coefficient(r, 0));
PGG_GlobalTimer_Push("newton polygon factorization");
rfacs := [R.1] cat newton_polygon_factorization(r div R.1);
PGG_GlobalTimer_Swap("get uniformizers");
assert Degree(rfacs[1]) eq 1;
assert forall{i : i in [1..#rfacs] | IsDivisibleBy(Degree(f), &+[Degree(rfacs[j]) : j in [1..i]])};
crfacs := [&*rfacs[1..i] : i in [1..#rfacs]];
cffacs := [Evaluate(crfac, PolynomialRing(L) ! [-pi, 1]) : crfac in crfacs];
pis := [Coefficient(cffac, 0) : cffac in cffacs];
PGG_GlobalTimer_Swap("tower from uniformizers");
twr := tower_from_uniformizers(L, K, Reverse(pis));
PGG_GlobalTimer_Pop();
return twr;
else
return [K] cat ramification_tower(L, U);
end if;
end function;
function random_element(E, B)
if IsPrimeField(E) then
return E ! Random(B);
else
return E ! [random_element(BaseField(E), B) : i in [1..Degree(E)]];
end if;
end function;
function random_primitive_element(E, F)
d := Degree(E, F);
if d eq 1 then
return E!0, PolynomialRing(F)![0,1];
end if;
B := 1;
while true do
x := random_element(E, B);
minpol := MinimalPolynomial(x, F);
if Degree(minpol) eq d then
return x, minpol;
else
B +:= 1;
end if;
end while;
end function;
function zero(K, apr)
z := (K!1) - (K!1);
return ShiftValuation(z, apr - AbsolutePrecision(z));
end function;
function change_apr(x, apr)
if IsWeaklyZero(x) or apr le Valuation(x) then
return zero(Parent(x), apr);
else
return ChangePrecision(x, apr - Valuation(x));
end if;
end function;
function trim_apr(x, trim)
return change_apr(x, AbsolutePrecision(x) - trim);
end function;
function maximize_apr(x)
if IsWeaklyZero(x) then
return Parent(x) ! 0;
else
return ChangePrecision(x, Precision(Parent(x)));
end if;
end function;
function residually_primitive_element(K)
F, m := ResidueClassField(Integers(K));
return PrimitiveElement(F) @@ m;
end function;
function primitive_element(L, K)
if Degree(L, K) eq 1 then
return L!1;
elif RamificationDegree(L, K) eq 1 then
return residually_primitive_element(L);
elif InertiaDegree(L, K) eq 1 then
return UniformizingElement(L);
else
return UniformizingElement(L) + residually_primitive_element(L);
end if;
end function;
// the following works, but looks like it was fixed anyway in V2.23-6
// function automorphism_group(L, K)
// ok, twr := is_extension_of(L, K);
// assert ok;
// if #twr eq 1 or Degree(L, K) eq 1 then
// return SymmetricGroup(1);
// end if;
// hs := Automorphisms(L, K);
// us := [h(u) : h in hs] where u:=primitive_element(L, K);
// huss := [[h(u) : u in us] : h in hs];
// perms := [[the([i : i in [1..#us] | IsWeaklyEqual(hu, us[i])]) : hu in hus] : hus in huss];
// return sub<SymmetricGroup(#us) | perms>;
// end function;
DEFAULT_TSCHIRNHAUS_TRANSFORMATIONS := [PolynomialRing(Z) | [0,1], [0,0,1], [0,-1,1], [0,1,1], [0,0,0,1], [0,1,0,1], [0,-1,0,1], [0,0,1,1], [0,0,-1,1], [0,1,1,1], [0,-1,-1,1]];
function tschirnhaus_transformation(ntries, degree)
assert ntries gt 0;
if ntries le #DEFAULT_TSCHIRNHAUS_TRANSFORMATIONS then
return DEFAULT_TSCHIRNHAUS_TRANSFORMATIONS[ntries];
else
return PolynomialRing(Z) ! [Random(1,ntries) : i in [1..ntries-#DEFAULT_TSCHIRNHAUS_TRANSFORMATIONS+2]];
end if;
end function;
function dflt(what, d)
return (what cmpne false) select what else d;
end function;
function dedupe_conjugage_subgroups(G, Hs)
CG := PGG_SubgroupClasses(G);
return [Rep(c) : c in {CG ! H : H in Hs}];
end function;
function dedupe_conjugage_subgroups_simple(G, Hs)
newHs := [];
for H in Hs do
if not exists{H2 : H2 in newHs | IsConjugate(G, H, H2)} then
Append(~newHs, H);
end if;
end for;
return newHs;
end function;
// non-checking version
// TODO: consider _is_subpartition_of({*1^^9*},{*2,3,4*}); currently we try assigning 1 to each of 2, 3, 4, and then assign 1 again, and keep going; but since we are assigning the same thing over and over, the order that these occur in is unimportant, so we are repeating work; hence, we should do a strategy which assigns all of the same element in one go
function _is_subpartition_of(P, Q)
if #P eq 0 then
assert #Q eq 0;
return true;
end if;
assert #P gt 0;
assert #Q gt 0;
// pick an element of p
// hopefully dealing with the largest ones first is optimal
p := Max(P);
P2 := Exclude(P, p);
// pick an element of Q it could come from
Rs := [];
for q in MultisetToSet(Q) do
if p le q then
Q2 := Exclude(Q, q);
if p lt q then
Include(~Q2, q-p);
end if;
ok := _is_subpartition_of(P2, Q2);
if ok then
return true;
end if;
end if;
end for;
return false;
end function;
// sequence of different ks such that k = sum_i ks[i] ms[i]
function partitions_of_shape(k, ms)
assert k ge 0;
if k eq 0 then
return [[0 : m in ms]];
elif #ms eq 0 then
return [];
elif #ms eq 1 then
ok, k1 := IsDivisibleBy(k, ms[1]);
if ok then
return [[k1]];
else
return [];
end if;
else
m1 := ms[1];
ret := [];
for k1 in [0..k div m1] do
k2 := k - k1 * m1;
assert k2 ge 0;
ret cat:= [[k1] cat p : p in partitions_of_shape(k2, ms[2..#ms])];
end for;
return ret;
end if;
end function;
// given two multisets of positive integers, determine if P may be obtained by partitioning each element of Q
function is_subpartition_of(P, Q)
assert Type(P) eq SetMulti;
assert Type(Q) eq SetMulti;
assert Universe(P) cmpeq Z;
assert Universe(Q) cmpeq Z;
assert forall{x : x in MultisetToSet(P) | x gt 0};
assert forall{x : x in MultisetToSet(Q) | x gt 0};
assert ((#P eq 0) and (#Q eq 0)) or ((#P gt 0) and (#Q gt 0) and (&+P eq &+Q));
return _is_subpartition_of(P, Q);
end function;
function _all_partition_groupings(P, Q)
ptodo := [<Q, [{**} : q in Q]>];
for p in Reverse(Sort(SetToSequence(MultisetToSet(P)))) do
n := Multiplicity(P, p);
ptodo_new := [];
for x in ptodo do
Qrem, Ps := Explode(x);
todo := [<n, []>];
for q in Qrem do
todo := [<x[1]-k, Append(x[2],k)> : k in [0..Min(x[1], q div p)], x in todo];
end for;
nss := [x[2] : x in todo | x[1] eq 0];
for ns in nss do
Append(~ptodo_new, <[Qrem[i]-ns[i]*p : i in [1..#Q]], [Ps[i] join {*p^^ns[i]*} : i in [1..#Q]]>);
end for;
end for;
ptodo := ptodo_new;
end for;
return [x[2] : x in ptodo | x[1] eq [0 : q in Q]];
end function;
// given a multiset P of integers, and a sequence Q of integers, returns all sequences Ps of length #Q of multisets of integers so that &join Ps eq P and &+Ps[i] eq Qs[i]; that is, assigns the elements of P to bins of size Q
function all_partition_groupings(P, Q)
assert Type(P) eq SetMulti;
assert Type(Q) eq SeqEnum;
assert Universe(P) eq Z;
assert Universe(Q) eq Z;
assert forall{x : x in MultisetToSet(P) | x gt 0};
assert forall{x : x in Q | x gt 0};
assert ((#P eq 0) and (#Q eq 0)) or ((#P gt 0) and (#Q gt 0) and (&+P eq &+Q));
return _all_partition_groupings(P, Q);
end function;
intrinsic PGG_all_partition_groupings(P :: {* RngIntElt *}, Q :: [RngIntElt]) -> []
{All sequences Ps of length #Q of multisets of integers such that &join Ps eq P and &+Ps[i] eq Qs[i].}
return all_partition_groupings(P, Q);
end intrinsic;
function extend_binning(binning, items : limit:=Infinity(), is_valid:=func<i,b | true>, is_semivalid:=func<i,b | true>)
// assert #binning eq #bins;
// assert forall{i : i in [1..#bins] | #binning[i] eq bins[i]};
assert limit ge 0;
if limit eq 0 then
return [];
end if;
// base case: no items to bin
n := #items;
if n eq 0 then
if forall{i : b in binning[i], i in [1..#binning] | is_semivalid(i,b) and is_valid(i,b)} then
return [binning];
else
return [];
end if;
end if;
// base case: multiplicity zero
if items[n] eq 0 then
return extend_binning(binning, items[1..n-1] : limit:=limit, is_valid:=is_valid, is_semivalid:=is_semivalid);
end if;
// main case: add an item into a bin
ret := [];
items[n] -:= 1;
for i in [1..#binning] do
b := binning[i];
// group the bin by excluding n, for each group record the highest multiplicity m, and whether m-1 was seen
A := AssociativeArray();
for x in MultisetToSet(b) do
m := Multiplicity(x,n);
x0 := Exclude(x, n^^m);
assert n notin x0;
if IsDefined(A, x0) then
if m eq A[x0][1]-1 then
A[x0][2] := true;
elif m eq A[x0][1]+1 then
A[x0] := <m, true>;
elif m gt A[x0][1] then
A[x0] := <m, false>;
end if;
else
A[x0] := <m, false>;
end if;
end for;
// add an item into the largest or largest but one bin
for x0 in Keys(A) do
for m in [A[x0][1]-(A[x0][2] select 1 else 0) .. A[x0][1]] do
x := Include(x0, n^^m);
assert x in b;
x2 := Include(x0, n^^(m+1));
b2 := Include(Exclude(b,x),x2);
if is_semivalid(i,x2) then
binning2 := binning;
binning2[i] := b2;
ret cat:= extend_binning(binning2, items : limit:=limit-#ret, is_valid:=is_valid, is_semivalid:=is_semivalid);
if #ret ge limit then
return ret[1..limit];
end if;
end if;
end for;
end for;
end for;
return ret;
end function;
function all_binnings(items, bins : limit:=Infinity(), is_valid:=func<i,b | true>, is_semivalid:=func<i,b | true>)
return extend_binning([PowerMultiset(PowerMultiset(Integers()))| {*{**}^^bins[i]*} : i in [1..#bins]], items : limit:=limit, is_valid:=is_valid, is_semivalid:=is_semivalid);
end function;
intrinsic PGG_all_binnings(items :: [RngIntElt], bins :: [RngIntElt] : limit:=Infinity(), is_valid:=func<i,b | true>, is_semivalid:=func<i,b | true>) -> []
{If items is a sequence of multiplicities of different items, and bins is a sequence of multiplicities of different bins, returns a sequence of possible binnings, where a binning is a sequence (of distinct bins) of multisets (of bins) of multisets (of items) of valid binnings of the items. A multiset b of items into the ith bin is valid if is_valid(i,b) is true. If b is a partial binning extendable to a valid binning, then is_semivalid(i,b) must be true; this is used to terminate branches of the algorithm early.}
return all_binnings(items, bins : limit:=limit, is_valid:=is_valid, is_semivalid:=is_semivalid);
end intrinsic;
function mset_apply(xs, f)
return {*f(x)^^Multiplicity(xs,x) : x in MultisetToSet(xs)*};
end function;
function sprint_with_parens(x : Level:="Default", Chars:=" \t\n")
str := Sprintf("%O", x, Level);
if exists{i : i in [1..#Chars] | Chars[i] in str} then
return "(" cat str cat ")";
else
return str;
end if;
end function;
function fldpad_has_isomorphism(L1, L2, K : MaximizeAPr:=true)
// check inputs
ok, t1 := is_extension_of(L1, K);
assert ok;
ok, t2 := is_extension_of(L2, K);
assert ok;
// case degrees unequal
if Degree(L1, K) ne Degree(L2, K) then
return false, _;
elif RamificationDegree(L1, K) ne RamificationDegree(L2, K) then
return false, _;
end if;
d := Degree(L1, K);
// case d=1
assert d eq Degree(L2, K);
if d eq 1 then
return true, map<L1 -> L2 | x :-> L2!K!x, y :-> L1!K!y>;
end if;
// case K is the direct base field
if #t1 eq 2 and #t2 eq 2 then
assert BaseField(L1) eq K;
assert BaseField(L2) eq K;
f1 := DefiningPolynomial(L1);
f2 := DefiningPolynomial(L2);
FUDGE := (e eq 1 select 0 else 2*e) where e:=AbsoluteRamificationDegree(L1);
ok, root1 := has_root(ChangeRing(f1, L2));
if not ok then
error if has_root(ChangeRing(f2, L1)), "precision error";
return false, _;
end if;
roots2 := roots(ChangeRing(f2, L1));
error if #roots2 eq 0, "precision error";
idxs := [i : i in [1..#roots2] | IsWeaklyEqual(trim_apr(L1.1,FUDGE), trim_apr(&+[L1| cs[i] * r^(i-1) : i in [1..#cs]],FUDGE) where cs:=fldpad_eltseq(root1)) where r:=roots2[i]];
error if #idxs ne 1, "precision error";
root2 := roots2[idxs[1]];
if MaximizeAPr then
root1 := maximize_apr(root1);
root2 := maximize_apr(root2);
end if;
return true, map<L1 -> L2 |
x :-> &+[L2| cs[i] * root1^(i-1) : i in [1..#cs]] where cs:=fldpad_eltseq(x),
y :-> &+[L1| cs[i] * root2^(i-1) : i in [1..#cs]] where cs:=fldpad_eltseq(y)>;
end if;
// general case
not_implemented("fldpad_has_isom: general towers of extensions");
end function;
procedure print_recursive(x)
if ISA(Type(x), MonStgElt) then
printf "%o", x;
elif ISA(Type(x), {List,SeqEnum,Tup}) then
for y in x do
print_recursive(y);
end for;
else
Print(x);
end if;
end procedure;
procedure print_header_then_indent(hdr, xs)
print_recursive(hdr);
if #xs gt 0 then
print "";
IndentPush();
for i in [1..#xs] do
print_recursive(xs[i]);
if i ne #xs then
print "";
end if;
end for;
IndentPop();
end if;
end procedure;
function seq_shuffle(xs)
return [xs[i^g] : i in [1..#xs]] where g:=Random(SymmetricGroup(#xs));
end function;
intrinsic PGG_has_random_subgroup(G :: Grp, is_valid, is_semivalid : MaxTries:=Infinity()) -> BoolElt, Grp
{Tries to find a subgroup H of G such that `is_valid(H)` is true. For all subgroups K of all such H, we must have `is_semivalid(K)` true. On success, returns true and a random such H. Otherwise, returns false. Can fail if MaxTries is exceeded.}
ntries := 0;
while ntries lt MaxTries do
ntries +:= 1;
H := sub<G | Id(G)>;
while true do
if is_valid(H) then
return true, H;
elif H eq G then
break;
elif is_semivalid(H) then
H := sub<G | H, Random(G)>;
else
break;
end if;
end while;
end while;
return false, _;
end intrinsic;
intrinsic PGG_has_random_subgroup_of_index(G :: Grp, n :: RngIntElt : MaxTries:=Infinity()) -> BoolElt, Grp
{"}
if not IsDivisibleBy(#G, n) then
return false, _;
end if;
return PGG_has_random_subgroup(G, func<H | Index(G,H) eq n>, func<H | IsDivisibleBy(Index(G,H), n)> : MaxTries:=MaxTries);
end intrinsic;
intrinsic PGG_linear_divisions(length :: RngIntElt, lengths :: {* RngIntElt *} : Bound:=false) -> []
{Given an interval of given length, find all possible divisions of it from among the given lengths. A division is a sequence of integers (sorted largest first) summing to the given length, whose elements are a subset of lengths. If Bound is given, the divisions must be lexicographically no more than it (i.e. the first element to disagree must be smaller).}
require length ge 0: "length must be at least 0";
require forall{len : len in MultisetToSet(lengths) | len gt 0}: "lengths must be at least 0";
if &+lengths lt length then
return [];
elif length eq 0 then
return [[]];
end if;
// parse the Bound
if Bound cmpeq false then
Bound := [length];
else
require forall{b : b in Bound | b gt 0}: "Bound must have positive entries";
require &+Bound eq length: "Bound must sum to length";
require forall{i : i in [2..#Bound] | Bound[i] le Bound[i-1]}: "Bound must be decreasing";
end if;
// loop over the first len
ret := [];
for len in Reverse(Sort(SetToSequence(MultisetToSet(lengths)))) do
if len le length and len le Bound[1] then
for lens in PGG_linear_divisions(length - len, lengths diff {* len *} : Bound := len eq Bound[1] select Bound[2..#Bound] else [Min(len,length-len-i) : i in [0..length-len-1 by len]]) do
Append(~ret, [len] cat lens);
end for;
end if;
end for;
return ret;
end intrinsic;
intrinsic PGG_rectangle_divisions(width :: RngIntElt, height :: RngIntElt, areas :: {* RngIntElt *} : Bound:=false) -> []
{Given a rectangle of given width and height, returns all possible integer divisions of the rectangle with the given areas. A division is a series of vertical cuts, through the whole rectangle, followed by a series of horizontal cuts within each resulting rectangle. It is returned in the form `[<w1,[h11,h12,...]>,<w2,[h21,...]>,...]` where the `wi` sum to width, and for each `i` the `hij` sum to height, and areas is the multiset of `wi*hij`.}
require width ge 0: "width must be at least 0";
require height ge 0: "height must be at least 0";
require forall{a : a in MultisetToSet(areas) | a gt 0}: "each area must be positive";
if &+areas lt width * height then
return [];
elif width eq 0 or height eq 0 then
return [[]];
end if;
// parse the Bound
if Bound cmpne false then
max_w, max_hs := Explode(Bound);
else
max_w := width;
max_hs := [height];
end if;
// make a w->hs lookup table
poss_hss := AssociativeArray();
for a in MultisetToSet(areas) do
m := Multiplicity(areas, a);
for h in Divisors(a) do
w := xdiv(a, h);
if h le height and w le width and w le max_w then
if not IsDefined(poss_hss, w) then
poss_hss[w] := {* h^^m *};
else
poss_hss[w] join:= {* h^^m *};
end if;
end if;
end for;
end for;
// loop over possible w
ret := [];
for w in Reverse(Sort(SetToSequence(Keys(poss_hss)))) do
poss_hs := poss_hss[w];
// now find possible hs
for hs in PGG_linear_divisions(height, poss_hs : Bound:=max_hs) do
for rdiv in PGG_rectangle_divisions(width-w, height, areas diff {* w*h : h in hs*} : Bound:=<w, w eq max_w select max_hs else [height]>) do
Append(~ret, [<w, hs>] cat rdiv);
end for;
end for;
end for;
return ret;
end intrinsic;
function realcomplexpairs(xs)
rs := [Z|];
cs := [car<Z,Z>|];
todo := [<true,x> : x in xs];
for i in [1..#todo] do
if todo[i][1] then
x := todo[i][2];
sz,j := Min([todo[j][1] select Abs(x - Conjugate(todo[j][2])) else Infinity() : j in [i..#todo]]);
j +:= i-1;
assert todo[j][1];
if j eq i then
Append(~rs, i);
else
todo[j][1] := false;
Append(~cs, <i,j>);
end if;
end if;
end for;
assert #rs + 2*#cs eq #xs;