-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmetric.py
166 lines (129 loc) · 5.28 KB
/
metric.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import numpy as np
################### metrics ###################
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.initialized = False
self.val = None
self.avg = None
self.sum = None
self.count = None
def initialize(self, val, weight):
self.val = val
self.avg = val
self.sum = val * weight
self.count = weight
self.initialized = True
def update(self, val, weight=1):
if not self.initialized:
self.initialize(val, weight)
else:
self.add(val, weight)
def add(self, val, weight):
self.val = val
self.sum += val * weight
self.count += weight
self.avg = self.sum / self.count
def value(self):
return self.val
def average(self):
return self.avg
def get_scores(self):
scores_dict = cm2score(self.sum)
return scores_dict
def clear(self):
self.initialized = False
################### cm metrics ###################
class ConfuseMatrixMeter(AverageMeter):
"""Computes and stores the average and current value"""
def __init__(self, n_class):
super(ConfuseMatrixMeter, self).__init__()
self.n_class = n_class
def update_cm(self, pr, gt, weight=1):
"""获得当前混淆矩阵,并计算当前F1得分,并更新混淆矩阵"""
val = get_confuse_matrix(num_classes=self.n_class, label_gts=gt, label_preds=pr)
self.update(val, weight)
return val
def get_scores(self,val_sum):
scores_dict = cm2score(val_sum)
return scores_dict
def harmonic_mean(xs):
harmonic_mean = len(xs) / sum((x+1e-6)**-1 for x in xs)
return harmonic_mean
def cm2F1(confusion_matrix):
# print(confusion_matrix.shape)
hist = confusion_matrix
n_class = hist.shape[0]
tp = np.diag(hist)
sum_a1 = hist.sum(axis=1)
sum_a0 = hist.sum(axis=0)
# ---------------------------------------------------------------------- #
# 1. Accuracy & Class Accuracy
# ---------------------------------------------------------------------- #
acc = tp.sum() / (hist.sum() + np.finfo(np.float32).eps)
# recall
recall = tp / (sum_a1 + np.finfo(np.float32).eps)
# acc_cls = np.nanmean(recall)
# precision
precision = tp / (sum_a0 + np.finfo(np.float32).eps)
# F1 score
F1 = 2 * recall * precision / (recall + precision + np.finfo(np.float32).eps)
mean_F1 = np.nanmean(F1)
return mean_F1
def cm2score(confusion_matrix):
hist = confusion_matrix
n_class = hist.shape[0]
tp = np.diag(hist)
sum_a1 = hist.sum(axis=1)
sum_a0 = hist.sum(axis=0)
# ---------------------------------------------------------------------- #
# 1. Accuracy & Class Accuracy
# ---------------------------------------------------------------------- #
acc = tp.sum() / (hist.sum() + np.finfo(np.float32).eps)
# recall
recall = tp / (sum_a1 + np.finfo(np.float32).eps)
# acc_cls = np.nanmean(recall)
# precision
precision = tp / (sum_a0 + np.finfo(np.float32).eps)
# F1 score
F1 = 2*recall * precision / (recall + precision + np.finfo(np.float32).eps)
mean_F1 = np.nanmean(F1)
# ---------------------------------------------------------------------- #
# 2. Frequency weighted Accuracy & Mean IoU
# ---------------------------------------------------------------------- #
iu = tp / (sum_a1 + hist.sum(axis=0) - tp + np.finfo(np.float32).eps)
mean_iu = np.nanmean(iu)
freq = sum_a1 / (hist.sum() + np.finfo(np.float32).eps)
fwavacc = (freq[freq > 0] * iu[freq > 0]).sum()
cls_iou = dict(zip(['iou_'+str(i) for i in range(n_class)], iu))
cls_precision = dict(zip(['precision_'+str(i) for i in range(n_class)], precision))
cls_recall = dict(zip(['recall_'+str(i) for i in range(n_class)], recall))
cls_F1 = dict(zip(['F1_'+str(i) for i in range(n_class)], F1))
score_dict = {'acc': acc, 'miou': mean_iu, 'mf1':mean_F1}
score_dict.update(cls_iou)
score_dict.update(cls_F1)
score_dict.update(cls_precision)
score_dict.update(cls_recall)
return score_dict
def get_confuse_matrix(num_classes, label_gts, label_preds):
"""计算一组预测的混淆矩阵"""
def __fast_hist(label_gt, label_pred):
"""
Collect values for Confusion Matrix
For reference, please see: https://en.wikipedia.org/wiki/Confusion_matrix
:param label_gt: <np.array> ground-truth
:param label_pred: <np.array> prediction
:return: <np.ndarray> values for confusion matrix
"""
mask = (label_gt >= 0) & (label_gt < num_classes)
hist = np.bincount(num_classes * label_gt[mask].astype(int) + label_pred[mask],
minlength=num_classes**2).reshape(num_classes, num_classes)
return hist
confusion_matrix = np.zeros((num_classes, num_classes))
for lt, lp in zip(label_gts, label_preds):
confusion_matrix += __fast_hist(lt.flatten(), lp.flatten())
return confusion_matrix
def get_mIoU(num_classes, label_gts, label_preds):
confusion_matrix = get_confuse_matrix(num_classes, label_gts, label_preds)
score_dict = cm2score(confusion_matrix)
return score_dict['miou']