-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_sam.py
89 lines (74 loc) · 3.69 KB
/
test_sam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
from segment_anything import sam_model_registry, SamAutomaticMaskGenerator
import cv2
import numpy as np
import torch
from glob import glob
from tqdm import tqdm
import argparse
import os
def make_mask(A_sam_masks, B_sam_masks, bool_diff_map, mask_thre, overlap_thre):
w,h = bool_diff_map.shape
refine_mask = torch.tensor(np.zeros((w,h))).cuda()
thre_size = w * h * mask_thre
overlap_size = w * h * overlap_thre
bool_diff_map = torch.tensor(bool_diff_map).cuda()
for B_sam_mask_dict in B_sam_masks:
B_sam_mask = torch.tensor(B_sam_mask_dict['segmentation']).cuda()
overlap_trigger = 0
_, b_sam_mask_count = torch.unique(B_sam_mask,return_counts=True)
if b_sam_mask_count[-1] > thre_size:
continue
for A_sam_mask_dict in A_sam_masks:
A_sam_mask = torch.tensor(A_sam_mask_dict['segmentation']).cuda()
_, a_sam_mask_count = torch.unique(A_sam_mask,return_counts=True)
if a_sam_mask_count[-1] > thre_size:
continue
overlap_ab = B_sam_mask * A_sam_mask
_, overlap_ab_count = torch.unique(overlap_ab,return_counts=True)
if len(overlap_ab_count) == 2:
if overlap_ab_count[-1] > (b_sam_mask_count[-1] * 0.95) and overlap_ab_count[-1] > (b_sam_mask_count[-1] * 1.05):
if overlap_ab_count[-1] > (a_sam_mask_count[-1] * 0.95) and overlap_ab_count[-1] > (a_sam_mask_count[-1] * 1.05):
overlap_trigger = 1
break
if overlap_trigger == 0:
overlap_diff = bool_diff_map * B_sam_mask
_, overlap_diff_count = torch.unique(overlap_diff,return_counts=True)
if len(overlap_diff_count) == 2 and (b_sam_mask_count[-1] * overlap_thre) <= overlap_diff_count[-1]:
refine_mask[B_sam_mask==True] = 255
return refine_mask
def main():
parser = argparse.ArgumentParser(description='Make test sam image')
parser.add_argument('--root_path', default='./datasets/', type=str)
parser.add_argument('--dataset_name', default='LEVIR-CD', type=str)
parser.add_argument('--save_name', default='levir', type=str)
parser.add_argument('--mode', default='test', type=str)
parser.add_argument('--mask_thre', default=0.05, type=int)
parser.add_argument('--overlap_thre', default=0.1, type=int)
args = parser.parse_args()
save_dir = './sam_refine_mask/' + args.save_name + '/'
if not os.path.exists(save_dir):
os.makedirs(save_dir)
A_img_dir = args.root_path + args.dataset_name + '/' + args.mode + '/A/'
B_img_dir = args.root_path + args.dataset_name + '/' + args.mode + '/B/'
# CDRL output directory
diff_map_path = './pixel_img_morpho/' + args.save_name + '/'
A_img_paths = glob(A_img_dir + '*')
A_img_paths.sort()
sam = sam_model_registry["default"](checkpoint="./pretrain_weight/sam_vit_h_4b8939.pth")
sam.to(device='cuda')
mask_generator = SamAutomaticMaskGenerator(sam)
for A_img_path in tqdm(A_img_paths[:2]):
img_name = A_img_path.split('/')[-1]
A_img = cv2.imread(A_img_path)
B_img = cv2.imread(B_img_dir + img_name)
ori_w, ori_h, _ = B_img.shape
diff_map = cv2.imread(diff_map_path + img_name, 0)
diff_map = cv2.resize(diff_map,(ori_w,ori_h))
bool_diff_map = np.where(diff_map>0,True,False)
A_masks = mask_generator.generate(A_img)
B_masks = mask_generator.generate(B_img)
refine_mask = make_mask(A_masks, B_masks, bool_diff_map, args.mask_thre, args.overlap_thre)
refine_mask = refine_mask.cpu().numpy()
cv2.imwrite(save_dir + img_name, refine_mask)
if __name__ == '__main__':
main()