-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
73 lines (65 loc) · 2.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras.preprocessing.image import load_img
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.applications.efficientnet import EfficientNetB4
train_datagen= tf.keras.preprocessing.image.ImageDataGenerator(
horizontal_flip=True,
shear_range=0.15,
rotation_range=20,
width_shift_range=0.2,
height_shift_range=0.2,
validation_split=0.3,
zoom_range=0.2,
preprocessing_function=None
)
### LOAD DATA
train_ds = train_datagen.flow_from_directory(
r'C:\Users\User\@Code-ML\Zoom-camp Capstone Project\Data\dataset',
target_size=(224, 224),
batch_size=32,
class_mode='categorical',
subset='training') # set as training data
val_ds = train_datagen.flow_from_directory(
r'C:\Users\User\@Code-ML\Zoom-camp Capstone Project\Data\dataset', # same directory as training data
target_size=(224, 224),
batch_size=32,
class_mode='categorical',
subset='validation') # set as validation data
# Final model
def make_model() :
base_model= EfficientNetB4(weights='imagenet', include_top= False, input_shape=(224, 224, 3))
base_model.trainable = False
##################################################
inputs = keras.Input(shape=(224, 224, 3))
base = base_model(inputs, training= False)
vectors = keras.layers.GlobalAveragePooling2D()(base)
drop1 = keras.layers.Dropout(0.5)(vectors)
inner = keras.layers.Dense(100, activation= 'relu')(drop1)
drop2 = keras.layers.Dropout(0.5)(inner)
outputs = keras.layers.Dense(8, activation='softmax')(drop2)
model = keras.Model(inputs, outputs)
##################################################
optimizer = keras.optimizers.Adam(learning_rate=0.001)
loss = keras.losses.CategoricalCrossentropy()
model.compile(
optimizer=optimizer,
loss = loss,
metrics=['accuracy']
)
return model
chechpoint = keras.callbacks.ModelCheckpoint(
'EfficientNetB4_Epoch-{epoch:02d}_Val-acc-{val_accuracy:.3f}.h5',
save_best_only=True,
monitor='val_accuracy',
mode='max'
)
model = make_model()
history = model.fit(
train_ds,
epochs=50,
validation_data=val_ds,
callbacks=[chechpoint]
)