-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtransformer.py
547 lines (484 loc) · 18 KB
/
transformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
from typing import Callable, List, Literal, Optional, Tuple, Union
import torch
import torch.nn.functional as F
from timm.layers import DropPath, Mlp, trunc_normal_
from torch import nn
Layer = Callable[..., nn.Module]
class Attention(nn.Module):
"""
An attention layer with support for cross and causal attention.
Based on timm vision_transformer.
"""
def __init__(
self,
dim: int,
num_heads: int = 8,
qkv_bias: bool = False,
qk_norm: bool = False,
attn_drop: float = 0.0,
proj_drop: float = 0.0,
norm_layer: Layer = nn.LayerNorm,
):
super().__init__()
assert dim % num_heads == 0, "dim should be divisible by num_heads"
self.num_heads = num_heads
self.head_dim = dim // num_heads
self.scale = self.head_dim**-0.5
self.q = nn.Linear(dim, dim, bias=qkv_bias)
self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias)
self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(
self,
x: torch.Tensor,
context: Optional[torch.Tensor] = None,
attn_mask: Optional[torch.Tensor] = None,
is_causal: bool = False,
kv_cache: Optional[torch.Tensor] = None,
return_kv: bool = False,
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
B, N, C = x.shape
if context is None:
context = x
M = context.size(1)
# (B, num_heads, N, head_dim)
q = self.q(x).reshape(B, N, self.num_heads, self.head_dim).permute(0, 2, 1, 3)
# (2, B, num_heads, M, head_dim)
kv = (
self.kv(context)
.reshape(B, M, 2, self.num_heads, self.head_dim)
.permute(2, 0, 3, 1, 4)
)
if kv_cache is not None:
kv = torch.cat([kv_cache, kv], dim=3)
k, v = kv.unbind(0)
q, k = self.q_norm(q), self.k_norm(k)
x = F.scaled_dot_product_attention(
q,
k,
v,
dropout_p=self.attn_drop.p,
is_causal=is_causal,
attn_mask=attn_mask,
)
x = x.transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
if return_kv:
return x, kv
return x
class LayerScale(nn.Module):
def __init__(self, dim, init_values=1e-5, inplace=False):
super().__init__()
self.inplace = inplace
self.gamma = nn.Parameter(init_values * torch.ones(dim))
def forward(self, x):
return x.mul_(self.gamma) if self.inplace else x * self.gamma
class Block(nn.Module):
def __init__(
self,
dim: int,
num_heads: int,
mlp_ratio: float = 4.0,
qkv_bias: bool = False,
qk_norm: bool = False,
proj_drop: float = 0.0,
attn_drop: float = 0.0,
init_values: Optional[float] = None,
drop_path: float = 0.0,
act_layer: Layer = nn.GELU,
norm_layer: Layer = nn.LayerNorm,
mlp_layer: Layer = Mlp,
cross_attn: bool = False,
):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention(
dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
qk_norm=qk_norm,
attn_drop=attn_drop,
proj_drop=proj_drop,
norm_layer=norm_layer,
)
self.ls1 = (
LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
)
self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
if cross_attn:
self.norm2 = norm_layer(dim)
self.cross = Attention(
dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
qk_norm=qk_norm,
attn_drop=attn_drop,
proj_drop=proj_drop,
norm_layer=norm_layer,
)
self.ls2 = (
LayerScale(dim, init_values=init_values)
if init_values
else nn.Identity()
)
self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
self.norm3 = norm_layer(dim)
self.mlp = mlp_layer(
in_features=dim,
hidden_features=int(dim * mlp_ratio),
act_layer=act_layer,
drop=proj_drop,
)
self.ls3 = (
LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
)
self.drop_path3 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
# Decoding related cache and flags
self._kv_cache: Optional[torch.Tensor] = None
self._is_decoding = False
self._use_cache = True
def forward(
self,
x: torch.Tensor,
context: Optional[torch.Tensor] = None,
attn_mask: Optional[torch.Tensor] = None,
is_causal: bool = False,
) -> torch.Tensor:
assert (
not self._is_decoding or is_causal
), "Can only decode with causal attention"
if self._is_decoding and self._use_cache:
assert (
self._kv_cache is None or x.shape[1] == 1
), "Can only decode one token at a time with caching"
y, kv = self.attn(
self.norm1(x),
attn_mask=attn_mask,
is_causal=is_causal and self._kv_cache is None,
kv_cache=self._kv_cache,
return_kv=True,
)
self._kv_cache = kv.detach()
y = self.ls1(y)
else:
y = self.attn(self.norm1(x), attn_mask=attn_mask, is_causal=is_causal)
y = self.ls1(y)
x = x + self.drop_path1(y)
if context is not None:
y = self.ls2(self.cross(self.norm2(x), context=context))
x = x + self.drop_path2(y)
y = self.ls3(self.mlp(self.norm3(x)))
x = x + self.drop_path3(y)
return x
def decoding(self, mode: bool = True, use_cache: bool = True):
if mode:
self._use_cache = use_cache
else:
self._kv_cache = None
self._is_decoding = mode
class TokenDropout(nn.Dropout1d):
"""
Dropout tokens without scaling by `1 / (1 - p)`.
"""
def forward(self, input: torch.Tensor) -> torch.Tensor:
output = super().forward(input)
if self.training:
output = (1 - self.p) * output
return output
class Transformer(nn.Module):
def __init__(
self,
num_patches: int,
in_features: int,
num_subs: int = 1024,
num_registers: int = 0,
num_classes: int = 4096,
global_pool: Optional[Literal["avg", "token", "reg"]] = None,
embed_dim: int = 768,
context_dim: int = 768,
depth: int = 12,
num_heads: int = 12,
mlp_ratio: float = 4.0,
with_sub_embed: bool = True,
with_next_pos: bool = True,
with_cross: bool = False,
is_causal: bool = True,
is_masked: bool = False,
drop_rate: float = 0.0,
sub_drop_rate: float = 0.0,
proj_drop_rate: float = 0.0,
attn_drop_rate: float = 0.0,
drop_path_rate: float = 0.0,
):
super().__init__()
assert (
global_pool != "reg" or num_registers > 0
), "Must set num_registers > 0 to use 'reg' global pooling"
self.num_patches = num_patches
self.in_features = in_features
self.num_subs = num_subs
self.num_registers = num_registers
self.num_classes = num_classes
self.global_pool = global_pool
self.embed_dim = embed_dim
self.context_dim = context_dim
self.with_sub_embed = with_sub_embed
self.with_next_pos = with_next_pos
self.with_cross = with_cross
self.is_causal = is_causal
self.is_masked = is_masked
self.patch_embed = nn.Linear(in_features, embed_dim)
if self.with_cross:
self.cross_embed = nn.Linear(context_dim, embed_dim)
else:
self.register_module("cross_embed", None)
self.group_token = nn.Parameter(torch.empty(1, 1, embed_dim))
if with_sub_embed:
self.sub_embed = nn.Parameter(torch.empty(num_subs, 1, embed_dim))
else:
self.register_parameter("sub_embed", None)
self.pos_embed = nn.Parameter(torch.empty(num_patches, embed_dim))
if with_next_pos:
self.next_pos_query = nn.Parameter(torch.empty(num_patches, embed_dim))
self.eos_query = nn.Parameter(torch.empty(1, embed_dim))
else:
self.register_parameter("next_pos_query", None)
self.register_parameter("eos_query", None)
if num_registers > 0:
self.reg_embed = nn.Parameter(torch.empty(num_registers, embed_dim))
else:
self.register_parameter("reg_embed", None)
self.sub_drop = TokenDropout(p=sub_drop_rate)
if is_masked:
self.mask_token = nn.Parameter(torch.empty(1, 1, embed_dim))
else:
self.register_parameter("mask_token", None)
# stochastic depth decay rule
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)]
self.blocks = nn.ModuleList(
[
Block(
dim=embed_dim,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
proj_drop=proj_drop_rate,
attn_drop=attn_drop_rate,
drop_path=dpr[i],
cross_attn=with_cross,
)
for i in range(depth)
]
)
use_fc_norm = self.global_pool in {"avg", "reg"}
self.norm = nn.Identity() if use_fc_norm else nn.LayerNorm(embed_dim)
self.fc_norm = nn.LayerNorm(embed_dim) if use_fc_norm else nn.Identity()
# Classifier Head
self.head_drop = nn.Dropout(drop_rate)
if num_classes > 0:
self.head = nn.Linear(self.embed_dim, num_classes)
else:
self.head = nn.Identity()
self.init_weights()
self._is_decoding = False
self._was_training = False
def init_weights(self):
if self.is_masked:
trunc_normal_(self.mask_token, std=0.02)
nn.init.zeros_(self.group_token)
if self.with_sub_embed:
trunc_normal_(self.sub_embed, std=0.02)
trunc_normal_(self.pos_embed, std=0.02)
if self.with_next_pos:
trunc_normal_(self.next_pos_query, std=0.02)
trunc_normal_(self.eos_query, std=0.02)
if self.num_registers > 0:
trunc_normal_(self.reg_embed, std=0.02)
self.apply(self._init_weights)
def _init_weights(self, module: nn.Module):
if isinstance(module, nn.Linear):
trunc_normal_(module.weight, std=0.02)
if module.bias is not None:
nn.init.zeros_(module.bias)
def _mask_pos(self, x: torch.Tensor, bool_masked_pos: torch.Tensor) -> torch.Tensor:
# token masking following BEiT
assert self.is_masked, "model must have is_masked=True"
B, N, _ = x.shape
mask_token = self.mask_token.expand(B, N, -1)
# replace the masked visual tokens by mask_token
w = bool_masked_pos.unsqueeze(-1).type_as(mask_token)
x = x * (1 - w) + mask_token * w
return x
def _pos_embed(
self,
x: torch.Tensor,
sub_indices: Optional[torch.Tensor] = None,
order: Optional[torch.Tensor] = None,
offset: Optional[int] = None,
) -> torch.Tensor:
assert (
order is None or not self.is_causal or self.with_next_pos
), "Must set with_next_pos=True for non-default patch order"
assert (
sub_indices is None or self.with_sub_embed
), "Must set with_sub_embed=True to use sub_indices"
# position of first token, -1 means start with subject token
assert offset is None or -1 <= offset < self.num_patches, "Invalid offset"
B = x.size(0)
# learned position encoding
pos_embed = self.pos_embed
if order is not None:
pos_embed = pos_embed[order]
pos_embed = pos_embed.expand(B, -1, -1)
# slice position embedding the start of the x subsequence
# only relevant during cached decoding
if offset is not None:
start = max(offset, 0)
pos_embed = pos_embed[:, start : start + x.size(1)]
x = x + pos_embed
if sub_indices is not None:
# subject encoding
sub_token = self.sub_drop(self.sub_embed[sub_indices])
sub_token = self.group_token + sub_token
else:
# group token only
sub_token = self.group_token.expand(B, -1, -1)
if offset is None or offset < 0:
x = torch.cat([sub_token, x], dim=1)
# learned next position query (for shuffled orders)
if self.with_next_pos:
next_pos_query = self.next_pos_query
if order is not None:
next_pos_query = next_pos_query[order]
next_pos_query = next_pos_query.expand(B, -1, -1)
eos_query = self.eos_query.expand(B, -1, -1)
next_pos_query = torch.cat([next_pos_query, eos_query], dim=1)
if offset is not None:
start = offset + 1
next_pos_query = next_pos_query[:, start : start + x.size(1)]
x = x + next_pos_query
# append registers
if self.num_registers > 0:
reg_embed = self.reg_embed.expand(B, -1, -1)
x = torch.cat([x, reg_embed], dim=1)
return x
def _get_attn_mask(self, x: torch.Tensor) -> Optional[torch.Tensor]:
L = x.size(-2)
device = x.device
# Allow global attention between sequence and registers
if self.is_causal and self.num_registers > 0:
attn_mask = torch.ones(L, L, dtype=torch.bool, device=device).tril_()
attn_mask[:, -self.num_registers :] = True
attn_mask[-self.num_registers :, :] = True
else:
attn_mask = None
return attn_mask
def forward_features(
self,
x: torch.Tensor,
sub_indices: Optional[torch.Tensor] = None,
context: Optional[torch.Tensor] = None,
order: Optional[torch.Tensor] = None,
bool_masked_pos: Optional[torch.Tensor] = None,
offset: Optional[int] = None,
) -> torch.Tensor:
assert (
context is None or self.with_cross
), "Must set with_cross=True to use context"
x = self.patch_embed(x)
if context is not None:
context = self.cross_embed(context)
if bool_masked_pos is not None:
x = self._mask_pos(x, bool_masked_pos)
x = self._pos_embed(x, sub_indices, order, offset=offset)
attn_mask = self._get_attn_mask(x)
is_causal = self.is_causal and attn_mask is None
for block in self.blocks:
x = block(x, context=context, is_causal=is_causal, attn_mask=attn_mask)
x = self.norm(x)
return x
def forward_head(self, x: torch.Tensor) -> torch.Tensor:
if self.global_pool == "avg":
x = x[:, 1:].mean(dim=1)
elif self.global_pool == "reg":
x = x[:, -self.num_registers :].mean(dim=1)
elif self.global_pool:
x = x[:, 0]
x = self.fc_norm(x)
x = self.head_drop(x)
x = self.head(x)
return x
def forward(
self,
patches: torch.Tensor,
sub_indices: Optional[torch.Tensor] = None,
context: Optional[torch.Tensor] = None,
order: Optional[torch.Tensor] = None,
bool_masked_pos: Optional[torch.Tensor] = None,
offset: Optional[int] = None,
) -> torch.Tensor:
"""
Args:
patches: input patches (B, N, D)
sub_indices: subject indices (B,)
context: context features (B, M, C)
order: token order (B, N) or (N,)
bool_masked_pos: masked token positions (B, N)
offset: position of first token, -1 means start with subject token
Returns:
output tensor (B, N+1, C), where the +1 is due to the prepended subject
token.
"""
x = self.forward_features(
patches,
sub_indices=sub_indices,
context=context,
order=order,
bool_masked_pos=bool_masked_pos,
offset=offset,
)
x = self.forward_head(x)
return x
def no_decay_keys(self) -> List[str]:
"""
Return a list of parameter names that should not be weight decayed.
"""
# Don't decay biases, layernorms, or position embeddings
# Combination of what's done in timm and nanoGPT
keys = [
name
for name, p in self.named_parameters()
if p.ndim < 2
or name
in {
"mask_token",
"group_token",
"sub_embed",
"pos_embed",
"next_pos_query",
"eos_query",
"reg_embed",
}
]
return keys
def decoding(self, mode: bool = True, use_cache: bool = True):
if mode:
self._was_training = self.training
self.eval()
else:
self.train(self._was_training)
self._is_decoding = mode
for block in self.blocks:
block.decoding(mode=mode, use_cache=use_cache)
def extra_repr(self) -> str:
return (
f"num_registers={self.num_registers}, "
f"with_sub_embed={self.with_sub_embed}, "
f"with_next_pos={self.with_next_pos}, "
f"with_cross={self.with_cross}, "
f"is_caual={self.is_causal}, "
f"is_masked={self.is_masked}"
)