From b00aaaed185e2f00e84a34986034c54109a52084 Mon Sep 17 00:00:00 2001 From: Angela Date: Mon, 17 Jun 2024 09:58:57 -0700 Subject: [PATCH] mypy --- cleanlab_studio/studio/studio.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/cleanlab_studio/studio/studio.py b/cleanlab_studio/studio/studio.py index 1416e1b8..a7fa4884 100644 --- a/cleanlab_studio/studio/studio.py +++ b/cleanlab_studio/studio/studio.py @@ -379,7 +379,7 @@ def download_pred_probs( If you want to work with predicted probabilities for an image project, the recommended workflow is to download probabilities with the option `keep_id=True`, and then do a join with the original dataset on the ID column. Alternatively, you can follow the steps [here](/reference/python/studio#method-download_embeddings), and filter out the rows that were not analyzed. The filtered dataset will then have rows that align with the predicted probabilities DataFrame. """ - pred_probs: Union[npt.NDArray[np.float_], pd.DataFrame] = api.download_array( + pred_probs: Union[npt.NDArray[np.float64], pd.DataFrame] = api.download_array( self._api_key, cleanset_id, "pred_probs" ) if not isinstance(pred_probs, pd.DataFrame): @@ -396,7 +396,7 @@ def download_pred_probs( def download_embeddings( self, cleanset_id: str, - ) -> npt.NDArray[np.float_]: + ) -> npt.NDArray[np.float64]: """ Downloads feature embeddings for a cleanset (available only for text and image projects). These are numeric vectors produced via neural network representations of each data point in your dataset.