-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdist_finetune.py
427 lines (379 loc) · 19 KB
/
dist_finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
# -*- coding: utf-8 -*-
import os
import gc
import argparse
import json
import random
import math
import random
from functools import reduce
import numpy as np
import pandas as pd
from scipy import sparse
from sklearn.model_selection import train_test_split, ShuffleSplit, StratifiedShuffleSplit, StratifiedKFold
from sklearn.metrics import accuracy_score, f1_score, confusion_matrix, precision_recall_fscore_support, classification_report
import torch
from torch import nn
from torch.optim import Adam, SGD, AdamW
from torch.nn import functional as F
from torch.optim.lr_scheduler import StepLR, CosineAnnealingWarmRestarts, CyclicLR
from torch.utils.data import DataLoader, Dataset
from torch.utils.data.distributed import DistributedSampler
from torch.nn.parallel import DistributedDataParallel as DDP
import torch.distributed as dist
from tqdm import tqdm
from performer_pytorch import PerformerLM
import scanpy as sc
import anndata as ad
from utils import *
from datetime import datetime
from time import time
import torch.multiprocessing as mp
from torch.nn.modules.utils import consume_prefix_in_state_dict_if_present
from torch.utils.tensorboard import SummaryWriter
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--master_addr", type=str, default="127.0.0.1", help='Master addr for dist finetune.')
parser.add_argument("--master_port", type=str, default="8500", help='Master port for dist finetune.')
parser.add_argument("--world_size", type=int, default=1, help='Number of GPUs.')
parser.add_argument("--bin_num", type=int, default=5, help='Number of bins.')
parser.add_argument("--gene_num", type=int, default=None, help='Number of genes.') # 16906, if not supplied, will take the number of genes in the supplied training data
parser.add_argument("--epochs", type=int, default=10, help='Number of epochs.')
parser.add_argument("--seed", type=int, default=2021, help='Random seed.')
parser.add_argument("--batch_size", type=int, default=32, help='Number of batch size.')
parser.add_argument("--learning_rate", type=float, default=1e-4, help='Learning rate.')
parser.add_argument("--grad_acc", type=int, default=1, help='Number of gradient accumulation.')
parser.add_argument("--valid_every", type=int, default=1, help='Number of training epochs between twice validation.')
parser.add_argument("--pos_embed_g2v", action='store_true', help='Using Gene2vec encoding or not (default no unless this arg is supplied).')
parser.add_argument("--g2v_file", type=str, default='/data/rna_rep_learning/scBERT/gene2vec_16906.npy', help='File containing Gene2vec embeddings')
parser.add_argument("--sin_emb_wavelength", type=float, default = None, help='Wavelength of sinusoidal expression encodings. Defaults to bin_num.')
parser.add_argument("--data_path", type=str, default='/data/rna_rep_learning/scBERT/Zheng68K.h5ad', help='Path of data for finetune.')
parser.add_argument("--model_path", type=str, default='ckpts/panglao_full_with_g2v/2022-May-11-17:38:47/panglao_full_with_g2v_epoch_17.pth', help='Path of pretrained checkpoint to load.')
parser.add_argument("--ft_ckpt", action="store_true", help="Add this flag if continuing to train an already finetuned model.")
parser.add_argument("--ckpt_dir", type=str, default='./ckpts/', help='Directory for saving checkpoints.')
parser.add_argument("--use_continuous", action="store_true", help='If this arg is provided, embed continuous expression values and predict continuous expression values during masking, instead of bucketed.')
parser.add_argument("--model_name", type=str, default='finetune', help='Finetuned model name.')
parser.add_argument("--debug", action="store_true", help="Debug setting: saves to new dir.")
parser.add_argument("--small_geneset", action='store_true', help='Train a smaller model. Currently implemented as including genes present in at least 5% of cells.')
args = parser.parse_args()
model_name = args.model_name
timestamp = datetime.now().strftime("%Y-%b-%d-%H:%M:%S")
ckpt_dir = os.path.join(args.ckpt_dir, model_name, timestamp)
# Create checkpoint dir if doesn't exist
# NOTE: Done before distributing to avoid process collision
if not (os.path.exists(ckpt_dir)):
os.makedirs(ckpt_dir)
print("Checkpoint dir: ", ckpt_dir)
mp.spawn(
distributed_finetune,
args=(args, ckpt_dir, model_name),
nprocs=args.world_size,
join=True,
)
def distributed_finetune(rank, args, ckpt_dir, model_name):
SEED = args.seed
EPOCHS = args.epochs
BATCH_SIZE = args.batch_size
GRADIENT_ACCUMULATION = args.grad_acc
LEARNING_RATE = args.learning_rate
VALIDATE_EVERY = args.valid_every
CLASS = args.bin_num + 2
POS_EMBED_USING = args.pos_embed_g2v
PATIENCE = 10
UNASSIGN_THRES = 0.0
USE_CONTINUOUS = args.use_continuous
if args.sin_emb_wavelength:
SIN_EMB_WAVELENGTH = args.sin_emb_wavelength
else:
SIN_EMB_WAVELENGTH = args.bin_num
is_master = rank == 0
master_addr = args.master_addr
master_port = args.master_port
world_size = args.world_size
# Control sources of randomness
torch.manual_seed(SEED)
random.seed(SEED)
np.random.seed(SEED)
### CLASSES FROM ORIGINAL CODE ###
class SCDataset(Dataset):
def __init__(self, data, label, use_continuous):
super().__init__()
self.data = data
self.label = label
self.use_continuous = use_continuous
def __getitem__(self, index):
#rand_start = random.randint(0, self.data.shape[0]-1)
full_seq = self.data[index].toarray()[0]
full_seq[full_seq > (CLASS - 2)] = CLASS - 2
full_seq = torch.from_numpy(full_seq).long() #long() converts to int64
if(not self.use_continuous):
full_seq = full_seq.long() #long() converts to int64
full_seq = torch.cat((full_seq, torch.tensor([0]))).to(device) #this is the CLS token ?
seq_label = self.label[index]
return full_seq, seq_label
def __len__(self):
return self.data.shape[0]
class Identity(torch.nn.Module):
def __init__(self, dropout = 0., h_dim = 100, out_dim = 10):
super(Identity, self).__init__()
self.conv1 = nn.Conv2d(1, 1, (1, 200))
self.act = nn.ReLU()
self.fc1 = nn.Linear(in_features=SEQ_LEN, out_features=512, bias=True)
self.act1 = nn.ReLU()
self.dropout1 = nn.Dropout(dropout)
self.fc2 = nn.Linear(in_features=512, out_features=h_dim, bias=True)
self.act2 = nn.ReLU()
self.dropout2 = nn.Dropout(dropout)
self.fc3 = nn.Linear(in_features=h_dim, out_features=out_dim, bias=True)
def forward(self, x):
x = x[:,None,:,:]
x = self.conv1(x)
x = self.act(x)
x = x.view(x.shape[0],-1)
x = self.fc1(x)
x = self.act1(x)
x = self.dropout1(x)
x = self.fc2(x)
x = self.act2(x)
x = self.dropout2(x)
x = self.fc3(x)
return x
def preprocess_data_smallgeneset(data_path, ref_data_path = '/data/rna_rep_learning/scBERT/panglao_human.h5ad'):
panglao = sc.read_h5ad(ref_data_path)
sc.pp.filter_genes(panglao, min_cells=0.05*len(panglao))
data = sc.read_h5ad(data_path)
counts = sparse.lil_matrix((data.X.shape[0],panglao.X.shape[1]),dtype=np.float32)
ref = panglao.var_names.tolist()
obj = data.var_names.tolist()
for i in range(len(ref)):
if ref[i] in obj:
loc = obj.index(ref[i])
counts[:,i] = data.X[:,loc]
counts = counts.tocsr()
new = ad.AnnData(X=counts)
new.var_names = ref
new.obs_names = data.obs_names
new.obs = data.obs
new.uns = panglao.uns
#sc.pp.filter_cells(new, min_genes=200)
#sc.pp.normalize_total(new, target_sum=1e4)
#sc.pp.log1p(new, base=2)
return(new)
setup_process(rank, master_addr, master_port, world_size)
device = torch.device("cuda:{}".format(rank))
print("Set up distributed processes...")
data = sc.read_h5ad(args.data_path)
if args.small_geneset:
data = preprocess_data_smallgeneset(args.data_path)
print("Filtered data to include {} genes present in at least 5% of cells".format(data.shape[1]))
else:
data = sc.read_h5ad(args.data_path)
if args.debug:
debug_seq_len = 5000
data = data[:1000,:debug_seq_len]
GRADIENT_ACCUMULATION = 1
label_dict, label = np.unique(np.array(data.obs['celltype']), return_inverse=True) # Convert strings categorical to integrate categorical, and label_dict[label] can be restored
class_num = np.unique(label, return_counts=True)[1].tolist()
#class_weight = torch.tensor([(1 - (x / sum(class_num))) ** 2 for x in class_num]) #doesn't get used anywhere
class_weight = torch.tensor([1/x for x in class_num]) #use this simpler weighting
label = torch.from_numpy(label)
data = data.X
if args.gene_num is not None:
SEQ_LEN = args.gene_num + 1
else:
SEQ_LEN = data.shape[1] + 1 # num_genes + 1
sss = StratifiedShuffleSplit(n_splits=1, test_size=0.2, random_state=2022) #update to hardcode to reduce sources of randomness/isolate performance differences between MODELS
for index_train, index_val in sss.split(data, label):
data_train, label_train = data[index_train], label[index_train]
data_val, label_val = data[index_val], label[index_val]
train_dataset = SCDataset(data_train, label_train, USE_CONTINUOUS)
val_dataset = SCDataset(data_val, label_val, USE_CONTINUOUS)
print("size of training data: {}".format(len(train_dataset)))
train_sampler = DistributedSampler(train_dataset, shuffle=True, seed=SEED)
val_sampler = DistributedSampler(val_dataset, shuffle=True, seed=SEED)
train_loader = DataLoader(train_dataset, batch_size=BATCH_SIZE, sampler=train_sampler)
val_loader = DataLoader(val_dataset, batch_size=BATCH_SIZE, sampler=val_sampler)
print("Loaded data...")
model = PerformerLM(
num_tokens = CLASS,
dim = 200,
depth = 6,
max_seq_len = SEQ_LEN,
heads = 10,
local_attn_heads = 0,
g2v_position_emb = POS_EMBED_USING,
g2v_file = args.g2v_file,
pred_continuous = USE_CONTINUOUS,
sin_emb_wavelength = SIN_EMB_WAVELENGTH,
)
model = model.to(device)
# Load checkpoint onto correct rank
checkpoint = torch.load(args.model_path, map_location=device)
consume_prefix_in_state_dict_if_present(checkpoint['model_state_dict'], "module.")
if args.ft_ckpt:
print("Loaded finetuned ckpt...")
model.to_out = Identity(dropout=0., h_dim=128, out_dim=label_dict.shape[0])
model.load_state_dict(checkpoint['model_state_dict'])
model = model.to(device)
cur_epoch = checkpoint['epoch']
# Load optimizer
#optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
# Load scheduler
#scheduler.load_state_dict(checkpoint['scheduler_state_dict'])
#calculate val accuracy of saved model, so knows whether next epoch is worth saving
model.eval()
dist.barrier()
predictions = []
truths = []
with torch.no_grad():
for index, (data_v, labels_v) in enumerate(val_loader):
index += 1
data_v, labels_v = data_v.to(device), labels_v.to(device)
logits = model(data_v)
softmax = nn.Softmax(dim=-1)
final_prob = softmax(logits)
final = final_prob.argmax(dim=-1)
final[np.amax(np.array(final_prob.cpu()), axis=-1) < UNASSIGN_THRES] = -1
predictions.append(final)
truths.append(labels_v)
del data_v, labels_v, logits, final_prob, final
# gather
predictions = distributed_concat(torch.cat(predictions, dim=0), len(val_sampler.dataset), world_size)
truths = distributed_concat(torch.cat(truths, dim=0), len(val_sampler.dataset), world_size)
no_drop = predictions != -1
predictions = np.array((predictions[no_drop]).cpu())
truths = np.array((truths[no_drop]).cpu())
max_acc = accuracy_score(truths, predictions)
else:
print("Loaded pretrained model...")
model.load_state_dict(checkpoint['model_state_dict'])
model.to_out = Identity(dropout=0., h_dim=128, out_dim=label_dict.shape[0]).to(device)
cur_epoch = 0
for name, param in model.named_parameters():
param.requires_grad = False
for name, param in model.norm.named_parameters():
param.requires_grad = True
for name, param in model.performer.net.layers[-1].named_parameters(): #make last layers of performer trainable during fine tuning
param.requires_grad = True
for name, param in model.to_out.named_parameters():
param.requires_grad = True
try:
model = DDP(model, device_ids=[device], output_device=device)
# optimizer
optimizer = Adam(model.parameters(), lr=LEARNING_RATE)
scheduler = CosineAnnealingWarmupRestarts(
optimizer,
first_cycle_steps=15,
cycle_mult=2,
max_lr=LEARNING_RATE,
min_lr=1e-6,
warmup_steps=5,
gamma=0.9
)
#implement class weights in loss to handle class imbalance
loss_fn = nn.CrossEntropyLoss(weight=class_weight).to(device)
dist.barrier()
trigger_times = 0
max_acc = 0.0
writer = SummaryWriter(os.path.join(ckpt_dir, 'tensorboard'))
for i in range(cur_epoch+1, EPOCHS+1):
print("{} iterations in train dataloader per epoch".format(len(train_loader)))
train_loader.sampler.set_epoch(i)
model.train()
dist.barrier()
running_loss = 0.0
cum_acc = 0.0
for index, (data, labels) in tqdm(enumerate(train_loader)):
index += 1
data, labels = data.to(device), labels.to(device)
if index % GRADIENT_ACCUMULATION != 0:
with model.no_sync():
logits = model(data)
loss = loss_fn(logits, labels)
loss.backward()
if index % GRADIENT_ACCUMULATION == 0:
logits = model(data)
loss = loss_fn(logits, labels)
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), int(1e6))
optimizer.step()
optimizer.zero_grad()
running_loss += loss.item()
softmax = nn.Softmax(dim=-1)
final = softmax(logits)
final = final.argmax(dim=-1)
pred_num = labels.size(0)
correct_num = torch.eq(final, labels).sum(dim=-1)
cum_acc += torch.true_divide(correct_num, pred_num).mean().item()
epoch_loss = running_loss / index
epoch_acc = 100 * cum_acc / index
epoch_loss = get_reduced(epoch_loss, device, 0, world_size)
epoch_acc = get_reduced(epoch_acc, device, 0, world_size)
if is_master:
print(f' == Epoch: {i} | Training Loss: {epoch_loss:.6f} | Accuracy: {epoch_acc:6.4f}% ==')
dist.barrier()
scheduler.step()
if i % VALIDATE_EVERY == 0:
model.eval()
dist.barrier()
running_loss = 0.0
predictions = []
truths = []
with torch.no_grad():
for index, (data_v, labels_v) in enumerate(val_loader):
index += 1
data_v, labels_v = data_v.to(device), labels_v.to(device)
logits = model(data_v)
loss = loss_fn(logits, labels_v)
running_loss += loss.item()
softmax = nn.Softmax(dim=-1)
final_prob = softmax(logits)
final = final_prob.argmax(dim=-1)
final[np.amax(np.array(final_prob.cpu()), axis=-1) < UNASSIGN_THRES] = -1
predictions.append(final)
truths.append(labels_v)
del data_v, labels_v, logits, final_prob, final
# gather
dist.barrier()
predictions = distributed_concat(torch.cat(predictions, dim=0), len(val_sampler.dataset), world_size)
truths = distributed_concat(torch.cat(truths, dim=0), len(val_sampler.dataset), world_size)
no_drop = predictions != -1
predictions = np.array((predictions[no_drop]).cpu())
truths = np.array((truths[no_drop]).cpu())
cur_acc = accuracy_score(truths, predictions)
f1 = f1_score(truths, predictions, average='macro')
val_loss = running_loss / index
val_loss = get_reduced(val_loss, device, 0, world_size)
dist.barrier() #hopefully this helps the last epoch get written to tensorboard when training on multiple gpus
if is_master:
print(f' == Epoch: {i} | Validation Loss: {val_loss:.6f} | F1 Score: {f1:.6f} ==')
print(confusion_matrix(truths, predictions))
print(classification_report(truths, predictions, labels=np.arange(len(label_dict)), target_names=label_dict.tolist(), digits=4))
writer.add_scalar('Loss/train', epoch_loss, i)
writer.add_scalar('Accuracy/train', epoch_acc, i)
writer.add_scalar('Loss/val', val_loss, i)
writer.add_scalar('Accuracy/val', cur_acc, i)
writer.add_scalar('F1/val', f1, i)
if cur_acc > max_acc:
max_acc = cur_acc
trigger_times = 0
save_best_ckpt(i, model, optimizer, scheduler, val_loss, model_name, ckpt_dir)
else:
trigger_times += 1
if trigger_times > PATIENCE:
break
del predictions, truths
except Exception as e:
print(e)
pass #so that cleanup() occurs with or without error
cleanup()
def setup_process(rank, master_addr, master_port, world_size, backend="nccl"):
print(f"Setting up process: rank={rank} world_size={world_size} backend={backend}.")
print(f"master_addr={master_addr} master_port={master_port}")
os.environ["MASTER_ADDR"] = master_addr
os.environ["MASTER_PORT"] = master_port
dist.init_process_group(backend=backend, rank=rank, world_size=world_size)
def cleanup():
dist.destroy_process_group()
if __name__=="__main__":
main()