forked from iai-callgrind/iai-callgrind
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_lib_bench_groups.rs
175 lines (164 loc) · 8.92 KB
/
test_lib_bench_groups.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
//! This is an example for setting up library benchmarks with the new api. An example for the old
//! api is `test_lib_bench_with_skip_setup`. It's best to read all the comments from top to bottom
//! to get a better understanding of the api.
//!
//! The new api has a lot of advantages especially handling of benchmark setup costs is greatly
//! simplified.
// These two functions from the benchmark-tests library serve as functions we want to benchmark
use benchmark_tests::{bubble_sort, fibonacci};
use iai_callgrind::{
black_box, library_benchmark, library_benchmark_group, main, EventKind, LibraryBenchmarkConfig,
RegressionConfig, Tool, ValgrindTool,
};
// This function is used to create a worst case array we want to sort with our implementation of
// bubble sort
fn setup_worst_case_array(start: i32) -> Vec<i32> {
if start.is_negative() {
(start..0).rev().collect()
} else {
(0..start).rev().collect()
}
}
// This function is used to create a best case array we want to sort with our implementation of
// bubble sort
fn setup_best_case_array(start: i32) -> Vec<i32> {
if start.is_negative() {
(start..0).collect()
} else {
(0..start).collect()
}
}
// The #[library_benchmark] attribute let's you define a benchmark function which you can later use
// in the `library_benchmark_groups!` macro. Just using the #[library_benchmark] attribute as a
// standalone is fine for simple function calls without parameters. However, we actually want to
// benchmark cases which would need to setup a vector with more elements, but everything we setup
// within the benchmark function itself is attributed to the event counts. See the next benchmark
// `bench_bubble_sort` function for a better example which uses the `bench` attribute to setup
// benchmark with different vectors.
#[library_benchmark]
// If possible, it's best to return something from a benchmark function
fn bench_bubble_sort_empty() -> Vec<i32> {
// The `black_box` is needed to tell the compiler to not optimize what's inside the black_box or
// else the benchmarks might return inaccurate results.
black_box(bubble_sort(black_box(vec![])))
}
// This benchmark uses the `bench` attribute to setup benchmarks with different setups. The big
// advantage is, that the setup costs and event counts aren't attributed to the benchmark (and
// opposed to the old api we don't have to deal with callgrind arguments, toggles, ...)
//
// The `bench` attribute consist of the attribute name itself, an unique id after `::` and
// optionally arguments with expressions which are passed to the benchmark function as parameter.
// Here we pass a single argument with `Vec<i32>` type to the benchmark. All arguments are already
// wrapped in a black box and don't need to be put in a `black_box` again.
#[library_benchmark]
// This bench is setting up the same benchmark case as above in the `bench_bubble_sort_empty` with
// the advantage that the setup costs for creating a vector (even if it is empty) aren't attributed
// to the benchmark and that the `array` is already wrapped in a black_box.
#[bench::empty(vec![])]
// Some other use cases to play around with
#[bench::worst_case_6(vec![6, 5, 4, 3, 2, 1])]
#[bench::best_case_6(vec![1, 2, 3, 4, 5, 6, 7])]
#[bench::best_case_20(vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20])]
// Function calls are fine too
#[bench::worst_case_4000(setup_worst_case_array(4000))]
#[bench::best_case_4000(setup_best_case_array(4000))]
// The argument of the benchmark function defines the type of the argument from the `bench` cases.
fn bench_bubble_sort(array: Vec<i32>) -> Vec<i32> {
// Note `array` is not put in a `black_box` because that's already done for you.
black_box(bubble_sort(array))
}
// This benchmark serves as an example for a benchmark function having more than one argument
// (Actually, to benchmark the fibonacci function, a single argument would have been sufficient)
#[library_benchmark]
// Any expression is allowed as argument
#[bench::fib_5_plus_fib_10(255 - 250, 10)]
#[bench::fib_30_plus_fib_20(30, 20)]
fn bench_fibonacci_sum(first: u64, second: u64) -> u64 {
black_box(black_box(fibonacci(first)) + black_box(fibonacci(second)))
}
// It's possible to specify a `LibraryBenchmarkConfig` valid for all benches of this
// `library_benchmark`. Since we only use the default here for demonstration purposes actually
// nothing changes. The default configuration is always applied.
#[library_benchmark(config = LibraryBenchmarkConfig::default())]
fn bench_fibonacci_with_config() -> u64 {
black_box(black_box(fibonacci(black_box(8))))
}
// A config per `bench` attribute is also possible using the alternative `bench` attribute with
// key = value pairs. The example below shows all accepted keys.
//
// Note that `LibraryBenchmarkConfig` is additive for callgrind arguments, tools and environment
// variables and appends them to the variables of `configs` of higher levels (like
// #[library_benchmark(config = ...)]). Only the last definition of a such configuration values is
// taken into account. Other non-collection like configuration values (like `RegressionConfig`) are
// overridden. In our example here: If `raw_callgrind_args(["--dump-instr=yes"])` would have been
// specified in a higher level configuration, then specifying
// `raw_callgrind_args(["--dump-instr=no")` in our configurations at this level would effectively
// overwrite the value for `--dump-instr` and only `--dump-instr=no` is applied for the benchmark
// run `fib_with_config`.
//
// Completely overriding previous definitions of valgrind tools instead of appending them with
// `LibraryBenchmarkConfig::tool` or `LibraryBenchmarkConfig::tools` can be achieved with
// `LibraryBenchmarkConfig::tool_override` or `LibraryBenchmarkConfig::tools_override`.
#[library_benchmark]
#[bench::fib_with_config(
args = (3, 4),
config = LibraryBenchmarkConfig::default()
.tool_override(
Tool::new(ValgrindTool::Massif)
)
)]
fn bench_fibonacci_with_config_at_bench_level(first: u64, second: u64) -> u64 {
black_box(black_box(fibonacci(black_box(first + second))))
}
// Use the `benchmarks` argument of the `library_benchmark_group!` macro to collect all benchmarks
// you want and put them into the same group. The `name` is a unique identifier which is used in the
// `main!` macro to collect all `library_benchmark_groups`.
//
// It's also possible to specify a `LibraryBenchmarkConfig` valid for all benchmarks of this
// `library_benchmark_group`. We configure the regression checks to fail the whole benchmark run as
// soon as a performance regression happens. This'll overwrite the `RegressionConfig` of the
// configuration of the `main!` macro.
library_benchmark_group!(
name = bubble_sort;
config = LibraryBenchmarkConfig::default()
.regression(
RegressionConfig::default().fail_fast(false)
);
benchmarks = bench_bubble_sort_empty, bench_bubble_sort
);
// In our example file here, we could have put `bench_fibonacci` into the same group as the bubble
// sort benchmarks and using a separate group merely serves as an example for having multiple
// groups.
//
// However, having separate groups can help organizing your benchmarks. The different groups are
// shown separately in the output of the callgrind run and the output files of a callgrind run are
// put in separate folders for each group.
library_benchmark_group!(
name = fibonacci;
benchmarks =
bench_fibonacci_sum,
bench_fibonacci_with_config,
bench_fibonacci_with_config_at_bench_level
);
// Finally, the mandatory main! macro which collects all `library_benchmark_groups` and optionally
// accepts a `config = ...` argument before the `library_benchmark_groups` argument. The main! macro
// creates a benchmarking harness and runs all the benchmarks defined in the groups and benches.
//
// We configure the regression checks to fail gracefully at the end of the whole benchmark run
// (`fail-fast = false`) using `EventKind::Ir` (Total instructions executed) with a limit of `+5%`
// and `EventKind::EstimatedCycles` with a limit of `+10%`. This `LibraryBenchmarkConfig` applies to
// all benchmarks in all groups (specified below) if it is not overwritten.
//
// In addition to running `callgrind` it's possible to run other valgrind tools like DHAT, Massif,
// (the experimental) BBV, Memcheck, Helgrind or DRD. Below we specify to run DHAT in addition to
// callgrind for all benchmarks (if not specified otherwise and/or overridden in a lower-level
// configuration). The output files of the profiling tools (DHAT, Massif, BBV) can be found next to
// the output files of the callgrind runs in `target/iai/...`.
main!(
config = LibraryBenchmarkConfig::default()
.regression(
RegressionConfig::default()
.limits([(EventKind::Ir, 5.0), (EventKind::EstimatedCycles, 10.0)])
)
.tool(Tool::new(ValgrindTool::DHAT));
library_benchmark_groups = bubble_sort, fibonacci);