You can set these values by giving command-line arguments like argparse, not modifying this configuration file directly. For the detailed description, please refer here.
-
use_ddp: Whether to use DataDistributedParallel. Set True to this to use multi-gpu.
-
port: The port for the DataDistributedParallel training.
-
decomposition: The location of decomposition rule file.
-
primals: The location of primals list file.
-
trainer: (leave blank)
- resume: Path to the checkpoint to resume from.
- work_dir: Path to save the checkpoints, the validation images, and log.
-
dset: (leave blank)
- train: (leave blank)
- source_path : path to the source font or source directory to use for the validation.
- source_ext: extension of the source data.
- If you are using a ttf file, set this to "ttf".
- If you are using image files, set this to their extension ("png", "jpg" ...).
- train: (leave blank)
-
gen (leave blank) (only in "cfgs/LF/p2/train.yaml")
- emb_dim: the dimension of style and component factors. (only in "cfgs/LF/p2/train.yaml")
python train_LF.py cfgs/LF/p1/train.yaml cfgs/data/train/custom.yaml --phase 1 --work_dir(optional) path/to/save/outputs
-g, -n, -nr, -p are arguments for the DistributedDataParallel training. You do not need to give these arguments if you are using a single GPU.
- arguments
- path/to/config (first argument): path to configration file.
- Multiple values are allowed but the first one should locate in
cfgs/LF
.
- Multiple values are allowed but the first one should locate in
- -g : number of gpus to use for the training.
- -n : number of nodes to use for the training.
- -nr : the ranking of current node within the nodes.
- -p : the port to use for the DistributedDataParallel training.
- --work_dir : path to save outputs. The
trainer.work_dir
in the configuration file will be overwrited to this value.
- path/to/config (first argument): path to configration file.
python train_LF.py cfgs/LF/p2/train.yaml cfgs/data/train/custom.yaml --resume path/to/phase1/weights --phase 2 --work_dir(optional) path/to/save/outputs
- arguments
- path/to/config (first argument, multiple values are allowed): path to configration file.
- Multiple values are allowed but the first one should locate in
cfgs/LF/p2
.
- Multiple values are allowed but the first one should locate in
- --resume : path to the weight which saved by phase 1 training.
- --phase : The training phase. 1 or 2 is available.
- --work_dir(optional) : path to save outputs. The
trainer.work_dir
in the configuration file will be overwrited to this value.
- path/to/config (first argument, multiple values are allowed): path to configration file.
All the arguments should be identical to the arguments used for the training the weight to evaluate.
- decomposition: The location of decomposition rule file.
- primals: The location of primals list file.
python inference.py cfgs/LF/p2/eval.yaml cfgs/data/eval/chn_ttf.yaml \
--model LF \
--weight weights/LF_chn.pth \
--result_dir ./result/LF
- arguments
- path/to/config (first argument): path to configration files.
- Multiple values are allowed but the first one should locate in
cfgs/LF/p2
.
- Multiple values are allowed but the first one should locate in
- --model : The model to evaluate. DM, LF, MX and FUNIT are available.
- --weight: The weight to evaluate.
- --result_dir: Path to save generated images.
- --n_ref: The number of reference characters to use for the generation.
- path/to/config (first argument): path to configration files.