-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathmodules.py
47 lines (37 loc) · 1.51 KB
/
modules.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
"""
Original code: https://github.com/NVlabs/FUNIT/blob/master/trainer.py
"""
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
def split_dim(x, dim, n_chunks):
shape = x.shape
assert shape[dim] % n_chunks == 0
return x.view(*shape[:dim], n_chunks, shape[dim] // n_chunks, *shape[dim+1:])
def weights_init(init_type='default'):
""" Adopted from FUNIT """
def init_fun(m):
classname = m.__class__.__name__
if (classname.find('Conv') == 0 or classname.find('Linear') == 0) and hasattr(m, 'weight'):
if init_type == 'gaussian':
nn.init.normal_(m.weight.data, 0.0, 0.02)
elif init_type == 'xavier':
nn.init.xavier_normal_(m.weight.data, gain=2**0.5)
elif init_type == 'kaiming':
nn.init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')
elif init_type == 'orthogonal':
nn.init.orthogonal_(m.weight.data, gain=2**0.5)
elif init_type == 'default':
pass
else:
assert 0, "Unsupported initialization: {}".format(init_type)
if hasattr(m, 'bias') and m.bias is not None:
nn.init.constant_(m.bias.data, 0.0)
return init_fun
def spectral_norm(module):
""" init & apply spectral norm """
nn.init.xavier_uniform_(module.weight, 2 ** 0.5)
if hasattr(module, 'bias') and module.bias is not None:
module.bias.data.zero_()
return nn.utils.spectral_norm(module)