-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsetlog_rules.pl
301 lines (230 loc) · 12 KB
/
setlog_rules.pl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
%%%%%%%% ATTN per versione setlog483 commentare le replace_rule br4, br5, br6
% Version 1.2-12
%release 0
% - aggiunte alcune inference rules per vincoli insiemistici
%release 1
% - aggiunte replace rules per dom/comp e pfun
%release 2
% - aggiunte replace rules per drespf
%release 3
% - aggiunte replace rules per inv-dom e inv-ran
%release 4
% - modificate replace rules per inv-dom e inv-ran
%release 5
% - aggiunte replace rule per 'un' su cp
%release 6
% - aggiunta replace rule per 'subset' su cp
%release 7
% - aggiunta replace rule per comp(R,S,T) e pfun(R) & pfun(S)
%release 8
% - eliminata replace rule per comp(R,S,T) e pfun(T)
% - aggiunto pfun(Q) a constraint generato da regola br5
%release 9
% - aggiunta inference rule su numeri interi per espressioni del tipo X is Y + k
%release 10
% - corretto bug in inference_rule 'un-disj'
%release 11
% - eliminate regole br7, br7bis, br8 e br8bis
%release 12
% -aggiunta replace_rule r4 per ttrattamento caso A neq B & set(A) & set(B)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% User-defined "filtering" rules
% for {log} version 4.8.2-2 or newer
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% by Maximiliano Cristia' and Gianfranco Rossi
% April 2014
%
% Revised March 2017
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
filter_on.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%% General rules %%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%% equivalence rules
% equiv_rule(A,B), with A, B {log} predicates: if the input goal contains B then
% then B matches with both filtering rules for A and filtering rules for B (since B => A)
:- op(700,xfx,[ein,enin]).
equiv_rule(e2,inters(X,Y,Z),dinters(X,Y,Z)). % e2. dinters(X,Y,Z) => inters(X,Y,Z)
equiv_rule(e3,ssubset(X,Y),dssubset(X,Y)). % e3. dssubset(X,Y) => ssubset(X,Y)
equiv_rule(e4,nsubset(X,Y),dnsubset(X,Y)). % e4. dnsubset(X,Y) => nsubset(X,Y)
equiv_rule(e5,X in Y,X ein Y). % e5. X ein Y => X in Y
equiv_rule(e6,X nin Y,X enin Y). % e6. X enin Y => X nin Y
%TO BE COMPLETED: esubset, einters, ...
%%%%%%%%%%%%%%%%%%%%%%%% replace rules
% replace_rule(
% W: when,
% C: atomic constraint
% C_Conds: list of conditions for C
% D: list of other atomic constraints to be checked
% D_Conds: list of conditions for atomic constraints in D and C
% AddC: constraint to be replaced to C)
%%%%% general
% t = X -replace-> X = t
replace_rule(br3,T=X,[var(X),nonvar(T)],[],[],X=T).
%%%%% sets
% inters(X,{...},t3) -replace-> inters({...},X,t3)
replace_rule(r3,inters(X,T2,T3),[var(X),nonvar(T2)],[],[],inters(T2,X,T3)).
% A neq B & set(A) & set(B) -replace-> (X in A & X nin B or X nin A & X in B)
replace_rule(r4,A neq B,[var(A),var(B)],[set(A1),set(B1)],[A1==A,B1==B],(X in A & X nin B or X nin A & X in B)).
%
% A neq {...} & set(A) -replace-> (X in A & X nin {...} or X nin A & X in {...})
replace_rule(r4,A neq B,[var(A),B=_ with _],[set(A1)],[A1==A],(X in A & X nin B or X nin A & X in B)).
%
% {...} neq B & set(B) -replace-> (X in B & X nin {...} or X nin B & X in {...})
replace_rule(r4,A neq B,[var(B),A=_ with _],[set(B1)],[B1==B],(X in A & X nin B or X nin A & X in B)).
%%%%% relations/partial functions
% dom(Rel,Dom) & pfun(Rel) -replace-> dompf(Rel,Dom) & pfun(Rel)
replace_rule(br4,dom(Rel,Dom),[var(Rel)],[pfun(Rel1)],[Rel1==Rel],dompf(Rel,Dom)).
% comp(R,S,Q) & pfun(R) & pfun(S) -replace-> comppf(R,S,Q) & pfun(Q) & pfun(R) & pfun(S)
replace_rule(br5,comp(R,S,Q),[var(R),var(S)],[pfun(R1),pfun(S1)],[R1==R,S1==S],comppf(R,S,Q) & pfun(Q)).
% dres(A,R,S) & pfun(R) -replace-> drespf(A,R,S) & pfun(R)
replace_rule(br6,dres(A,R,S),[var(R)],[pfun(R1)],[R1==R],drespf(A,R,S)).
% rel(R) & pfun(R) -replace-> pfun(R) & pfun(R)
replace_rule(br7,rel(R),[var(R)],[pfun(R1)],[R1==R],pfun(R)).
% inv(R,S) & dom(S,A) -replace-> delay(inv(R,S) & dom(S,A),false) & ran(R,A)
%replace_rule(br7,inv(R,S),[var(S)],[dom(S1,A)],[S==S1],delay(inv(R,S),false) & delay(dom(S,A),false) & ran(R,A)).
%replace_rule(br7bis,dom(S,A),[],[delay(dom(S1,A1),_)],[S==S1,A==A1],a=a).
% inv(R,S) & ran(R,A) -replace-> delay(inv(R,S) & ran(R,A),false) & dom(S,A)
%replace_rule(br8,inv(R,S),[var(R)],[ran(R1,A)],[R==R1],delay(inv(R,S),false) & delay(ran(R,A),false) & dom(S,A)).
%replace_rule(br8bis,ran(R,A),[],[delay(ran(R1,A1),_)],[R1==R,A1==A],a=a).
%un(S,T,cp(A,A)) -replace-> delay(un(S,T,cp(A,A)),false)
%un(S,cp(C,D),cp(A,A)) -replace-> delay(un(S,cp(C,D),cp(A,A)),false)
replace_rule(br9,un(S,T,CP2),[var(S),var(T),nonvar(CP2),CP2=cp(A,B),var(A),A==B],
[],[],G=un(S,T,CP2) & delay(G,false) ).
replace_rule(br9bis,un(S,CP1,CP2),[var(S),nonvar(CP1),CP1=cp(C,D),var(C),var(D),nonvar(CP2),CP2=cp(A,B),var(A),A==B],
[],[],G=un(S,CP1,CP2) & delay(G,false) ).
%subset(S,cp(A,A)) -replace-> delay(subset(S,cp(A,A)),false)
replace_rule(br10,subset(S,CP2),[var(S),nonvar(CP2),CP2=cp(A,B),var(A),A==B],
[],[],G=subset(S,CP2) & delay(G,false) ).
%%%%% integer numbers
% X < Y -replace-> Y > X
replace_rule(br1,X < Y,[var(X),var(Y)],[],[],Y > X).
% X =< Y -replace-> Y >= X
replace_rule(br2,X =< Y,[var(X),var(Y)],[],[],Y >= X).
%TO BE COMPLETED
%%%%%%%%%%%%%%%%%%%%%%%% inference rules
% inference_rule(
% W: when,
% C: atomic constraint
% C_Conds: list of conditions for C
% D: list of other atomic constraints to be checked
% D_Conds: list of conditions for atomic constraints in D and C
% E: list of constraints in D to be NOT checked
% AddC: constraint to be added)
%%%%% sets
%inters(X,Y,Z) & un(X,Y,Z) -+-> X = Y & Y = Z
inference_rule('inters-un1',inters(X,Y,Z),[var(X),var(Y),var(Z)],[un(X1,Y1,Z1)],[X1==X,Y1==Y,Z1==Z],[],X = Y & Y = Z).
%inters(X,Y,Z) & un(Y,X,Z) -+-> X = Y & Y = Z
inference_rule('inters-un2',inters(X,Y,Z),[var(X),var(Y),var(Z)],[un(Y1,X1,Z1)],[X1==X,Y1==Y,Z1==Z],[],X = Y & Y = Z).
%inters(X,Y,Z) & diff(X,Y,Z) -+-> X = {}
inference_rule('inters-diff1',inters(X,Y,Z),[var(X),var(Y),var(Z)],[diff(X1,Y1,Z1)],[X1==X,Y1==Y,Z1==Z],[],X = {}).
%inters(X,Y,Z) & diff(Y,X,Z) -+-> Y = {}
inference_rule('inters-diff2',inters(X,Y,Z),[var(X),var(Y),var(Z)],[diff(Y1,X1,Z1)],[X1==X,Y1==Y,Z1==Z],[],Y = {}).
% un(X,Y,Z) & disj(X,Z) -add-> X = {}
inference_rule('un-disj',un(X,Y,Z),[var(X),var(Y),var(Z)],[disj(X1,Z1)],[X1==X,Z1==Z],[], X = {}).
%%%%% lists
% length(L,N) & length(L,M) -add-> N = M
inference_rule('length-length',length(L,N),[var(L)],[length(L1,M)],[L1==L],[length(L,N)], N = M).
%%%%% integer numbers
% X > Y & Y > Z -add-> X > Z
inference_rule('gt-gt',X > Y,[var(X),var(Y)],[Y1 > Z],[Y1==Y,Z\==X],[X > Y], X > Z).
% X >= Y & Y >= X -add-> X = Y
inference_rule('ge-ge',X >= Y,[var(X),var(Y)],[Y1 >= X1],[Y1==Y,X1==X],[], X = Y).
% X is A - B & A > 0 & B > 0 & X > 0 -add-> A > B
inference_rule('minus-gt0-gt0',X is A - B,[var(X),var(A),var(B)],[A1 > 0, B1 > 0, X1 > 0],[A1==A,B1==B,X1==X],[], A > B).
% X is Y + k & Z is Y + k -add-> X = Z
inference_rule('sum-sum',X is Y + K,[var(X),var(Y),integer(K)],[Z is Y1 + K1],[var(Z),var(Y1),integer(K1),Y1==Y,K1==K],[X is Y+K], X = Z).
%%%%%%%%%%%%%%%%%%%%%%%% fail rules
% fail_rule(
% W: when,
% C: atomic constraint
% C_Conds: list of conditions for C
% D: list of other atomic constraints to be checked
% D_Conds: list of conditions for atomic constraints in D and C
% E: list of constraints in D to be NOT checked)
%%%%% integer numbers
% bf1. X > Y & Y > X
fail_rule('gt-gt',X > Y,[],[V > W],[V==Y,W==X],[]).
% it works also for X > X
% bf2. X >= Y & Y > X
fail_rule('ge-gt',X >= Y,[],[V > W],[V==Y,W==X],[]).
%%%%% sets
% bf3. X in S & X nin S
fail_rule('in-nin',X in S,[var(S)],[X1 nin S1],[X1==X,S1==S],[]).
% bf4. NotSubsetOfSingleton
% A neq {} & ssubset(A,{X})
fail_rule('NotSubsetOfSingleton',ssubset(A,S),[nonvar(S),S={} with _X],[A1 neq E],[nonvar(E),E={},A1==A],[]).
%%%%% intervals (terminating, provided all variables have "not too big" domains)
% bf5. NatRangeNotEmpty
% X is Z+k & Y is Z+h & I=int(X,Y) & I={} and k =< h, k, h integer constants
fail_rule('NatRangeNotEmpty',I=int(X,Y),[var(X),var(Y)],[X1 is Expr1,Y1 is Expr2,I1=E],[nonvar(Expr1),Expr1=(Z+A),integer(A),nonvar(Expr2),Expr2=(Z1+B),integer(B),A=<B,nonvar(E),E={},X1==X,Y1==Y,Z1==Z,I1==I],[]).
% f21. NatRangeNotEq3
% I=int(X,Y) & J=int(a,b) & I=J & X is Z+N & Y is Z+M & N is V*h & M =< P & P is W*h & W is V+k
% and a,b,h,k integer constants >= 0 and it holds that b-a > k*h
%
fail_rule('NatRangeNotEq3',I=int(X,Y),
[var(I),var(X),var(Y)],
[X1 is Z+N, Y1 is Z1+M, N is V*H, P >= M, P1 is W*H, W is V1+K, J=int(A,B), I1=J1],
[integer(A),A>=0,integer(B),B>=0,var(J),
var(I1),var(J1),var(X1),var(Y1),
var(N),integer(H),H>=0,
var(P),var(M),var(P1),
var(W),integer(K),K>=0, B-A > K*H,
I==I1,J==J1,X==X1,Y==Y1,Z==Z1,P==P1,V==V1],[]).
% f22. NatRangeNotSubset
% I=int(X,Y) & J=int(Kn,Km) & essubset(J,I) & X is N+Za & Y is N+Zb & Za is M*Kp & Zb is Zc*Kp & Zc is M+Kq
% with Km-Kn > Kq*Kp
%
fail_rule('NatRangeNotSubset',I=int(X,Y),
[var(I),var(X),var(Y)],
[X1 is N+Za, Y1 is N1+Zb, Za1 is M*Kp, Zb1 is Zc*Kp, Zc1 is M1+Kq, J=int(Kn,Km), essubset(J1,I1)],
[integer(Kn),Kn>=0,integer(Km),Km>=0,var(J),
var(I1),var(J1),var(X1),var(Y1),
var(N),var(M),var(Za),var(Zb),var(Zc),
var(N1),var(M1),var(Za1),var(Zb1),var(Zc1),
integer(Kq),Kq>=0,integer(Kp),Kq>=0,Km-Kn > Kq*Kp,
I==I1,J==J1,X==X1,Y==Y1,N==N1,M==M1,Za=Za1,Zb==Zb1,Zc==Zc1],[]).
% f23. NatRangeNotEq
% I=int(X,Y) & J=int(Kn,Km) & I=J & X is N+Za & Y is N+Zb & Za is M*Kp & Zb is Zc*Kp & Zc is M+Kq
% with Km-Kn > Kq*Kp
%
fail_rule('NatRangeNotEq',I=int(X,Y),
[var(I),var(X),var(Y)],
[X1 is N+Za, Y1 is N1+Zb, Za1 is M*Kp, Zb1 is Zc*Kp, Zc1 is M1+Kq, J=int(Kn,Km), I1=J1],
[integer(Kn),Kn>=0,integer(Km),Km>=0,var(J),
var(I1),var(J1),var(X1),var(Y1),
var(N),var(M),var(Za),var(Zb),var(Zc),
var(N1),var(M1),var(Za1),var(Zb1),var(Zc1),
integer(Kq),Kq>=0,integer(Kp),Kq>=0,Km-Kn > Kq*Kp,
I==I1,J==J1,X==X1,Y==Y1,N==N1,M==M1,Za=Za1,Zb==Zb1,Zc==Zc1],[]).
% f24. NatRangeNotEmpty3
% I=int(X,Y) & I={} & X is N+Za & Y is N+Zb & Za is M*Kn & Zb is Zc*Kn & Zc is M+Km
%
fail_rule('NatRangeNotEmpty3',I=int(X,Y),
[var(I),var(X),var(Y)],
[X1 is N+Za, Y1 is N1+Zb, Za1 is M*Kn, Zb1 is Zc*Kn, Zc1 is M1+Km, I1=E],
[nonvar(E),E={},
integer(Kn),Kn>=0,integer(Km),Km>=0,
var(I1),var(X1),var(Y1),
var(N),var(M),var(Za),var(Zb),var(Zc),
var(N1),var(M1),var(Za1),var(Zb1),var(Zc1),
I==I1,X==X1,Y==Y1,N==N1,M==M1,Za=Za1,Zb==Zb1,Zc==Zc1],[]).
% f25. NatRangeNotEmpty4
% I=int(N,Y) & I={} & Y is N+M
%
fail_rule('NatRangeNotEmpty4',I=int(N,Y),
[var(I),var(N),var(Y)],
[Y1 is N1+M, I1=E],
[nonvar(E),E={},var(I1),var(Y1),var(N),var(N1),var(M),I==I1,Y==Y1,N==N1],[]).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%% More specific rules %%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Add here other more specific user-defined rewriting rules
%%%%%%%%%%%%%%%%%%%%%%%% for the TTF
:- (exists_file('TTF_rules.pl'),!,consult('TTF_rules.pl')
;
true).