-
Notifications
You must be signed in to change notification settings - Fork 0
/
双轴图.nb
executable file
·4278 lines (4230 loc) · 214 KB
/
双轴图.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 12.1' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 214518, 4270]
NotebookOptionsPosition[ 211138, 4206]
NotebookOutlinePosition[ 211548, 4223]
CellTagsIndexPosition[ 211505, 4220]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[BoxData[
RowBox[{
RowBox[{"TwoAxisListLinePlot", "[",
RowBox[{
RowBox[{"{",
RowBox[{"f_", ",", "g_"}], "}"}],
RowBox[{"(*",
RowBox[{",",
RowBox[{"{",
RowBox[{"x_", ",", "x1_", ",", "x2_"}], "}"}]}], "*)"}], ",",
RowBox[{"p", ":",
RowBox[{"OptionsPattern", "[", "]"}]}]}], "]"}], ":=",
RowBox[{"Module", "[",
RowBox[{
RowBox[{"{",
RowBox[{
"fgraph", ",", "ggraph", ",", "frange", ",", "grange", ",", "fticks",
",", "gticks"}], "}"}], ",",
RowBox[{
RowBox[{
RowBox[{"{",
RowBox[{"fgraph", ",", "ggraph"}], "}"}], "=",
RowBox[{"MapIndexed", "[",
RowBox[{
RowBox[{
RowBox[{"ListLinePlot", "[",
RowBox[{"#", ",",
RowBox[{"Axes", "\[Rule]", "True"}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{
RowBox[{"ColorData", "[", "1", "]"}], "[",
RowBox[{"#2", "[",
RowBox[{"[", "1", "]"}], "]"}], "]"}]}]}], "]"}], "&"}], ",",
RowBox[{"{",
RowBox[{"f", ",", "g"}], "}"}]}], "]"}]}], ";",
RowBox[{
RowBox[{"{",
RowBox[{"frange", ",", "grange"}], "}"}], "=",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"PlotRange", "/.",
RowBox[{"AbsoluteOptions", "[",
RowBox[{"#", ",", "PlotRange"}], "]"}]}], ")"}], "[",
RowBox[{"[", "2", "]"}], "]"}], "&"}], "/@",
RowBox[{"{",
RowBox[{"fgraph", ",", "ggraph"}], "}"}]}]}], ";",
RowBox[{"fticks", "=",
RowBox[{"N", "@",
RowBox[{"FindDivisions", "[",
RowBox[{"frange", ",", "5"}], "]"}]}]}], ";", "\[IndentingNewLine]",
RowBox[{"gticks", "=",
RowBox[{"Quiet", "@",
RowBox[{"Transpose", "@",
RowBox[{"{",
RowBox[{"fticks", ",",
RowBox[{
RowBox[{
RowBox[{"ToString", "[",
RowBox[{
RowBox[{"NumberForm", "[",
RowBox[{"#", ",", "2"}], "]"}], ",", "StandardForm"}], "]"}],
"&"}], "/@",
RowBox[{"Rescale", "[",
RowBox[{"fticks", ",", "frange", ",", "grange"}], "]"}]}]}],
"}"}]}]}]}], ";", "\[IndentingNewLine]",
RowBox[{"Show", "[",
RowBox[{"fgraph", ",",
RowBox[{"ggraph", "/.",
RowBox[{
RowBox[{"Graphics", "[",
RowBox[{"graph_", ",", "s___"}], "]"}], "\[RuleDelayed]",
RowBox[{"Graphics", "[",
RowBox[{
RowBox[{"GeometricTransformation", "[",
RowBox[{"graph", ",",
RowBox[{"RescalingTransform", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", "1"}], "}"}], ",", "grange"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", "1"}], "}"}], ",", "frange"}], "}"}]}],
"]"}]}], "]"}], ",", "s"}], "]"}]}]}], ",",
RowBox[{"Axes", "\[Rule]", "False"}], ",",
RowBox[{"Frame", "\[Rule]", "True"}], ",",
RowBox[{"FrameStyle", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"ColorData", "[", "1", "]"}], "/@",
RowBox[{"{",
RowBox[{"1", ",", "2"}], "}"}]}], ",",
RowBox[{"{",
RowBox[{"Automatic", ",", "Automatic"}], "}"}]}], "}"}]}], ",",
RowBox[{"FrameTicks", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"fticks", ",", "gticks"}], "}"}], ",",
RowBox[{"{",
RowBox[{"Automatic", ",", "Automatic"}], "}"}]}], "}"}]}], ",",
"p"}], "]"}]}]}], "]"}]}]], "Input",
CellLabel->"In[1]:=",ExpressionUUID->"2fec0324-563f-4eb3-87dc-b79b4efa89e5"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"SetDirectory", "[",
RowBox[{"NotebookDirectory", "[", "]"}], "]"}]], "Input",
CellLabel->"In[3]:=",ExpressionUUID->"c4a0e8bf-b79c-4024-a6ef-9035cc9ddd7f"],
Cell[BoxData["\<\"\\\\\\\\CLQ-PI\\\\pi\\\\Desktop\\\\mathematica_drawing_\
template\"\>"], "Output",
CellLabel->"Out[3]=",ExpressionUUID->"2c3d548e-4fd5-4cd1-94cc-47fa00da322c"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"TwoAxisListLinePlot", "[",
RowBox[{
RowBox[{"{", "\[IndentingNewLine]",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"MapIndexed", "[",
RowBox[{
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"#2", "[",
RowBox[{"[", "1", "]"}], "]"}], "*", "0.001"}], ",",
RowBox[{"#1", "[", "\"\<\:7ebf\:6761\:5bc6\:5ea6\>\"", "]"}]}],
"}"}], "&"}], ",",
RowBox[{"(",
RowBox[{"Get", "@",
RowBox[{"FileNameJoin", "[",
RowBox[{"{",
RowBox[{
"\"\<\:6d4b\:8bd5\:6570\:636e\>\"", ",", "\"\<thedata4.wl\>\""}],
"}"}], "]"}]}], ")"}]}], "]"}], ",",
RowBox[{"MapIndexed", "[",
RowBox[{
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"#2", "[",
RowBox[{"[", "1", "]"}], "]"}], "*", "0.001"}], ",",
RowBox[{"#1", "[", "\"\<\:7ebf\:6761\:5bc6\:5ea6\>\"", "]"}]}],
"}"}], "&"}], ",",
RowBox[{"(",
RowBox[{"Get", "@",
RowBox[{"FileNameJoin", "[",
RowBox[{"{",
RowBox[{
"\"\<\:6d4b\:8bd5\:6570\:636e\>\"", ",", "\"\<thedata3.wl\>\""}],
"}"}], "]"}]}], ")"}]}], "]"}]}], "}"}], ",",
"\[IndentingNewLine]",
RowBox[{"MovingAverage", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"#", "[",
RowBox[{"[",
RowBox[{"1", ",", "1"}], "]"}], "]"}], ",",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"#", "[",
RowBox[{"[", "2", "]"}], "]"}], "-",
RowBox[{"#", "[",
RowBox[{"[", "1", "]"}], "]"}]}], ")"}], "[",
RowBox[{"[", "2", "]"}], "]"}], "/",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"#", "[",
RowBox[{"[", "2", "]"}], "]"}], "-",
RowBox[{"#", "[",
RowBox[{"[", "1", "]"}], "]"}]}], ")"}], "[",
RowBox[{"[", "1", "]"}], "]"}]}], ")"}]}], "}"}], "&"}], "/@",
RowBox[{"Partition", "[",
RowBox[{
RowBox[{"MapIndexed", "[",
RowBox[{
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"#2", "[",
RowBox[{"[", "1", "]"}], "]"}], "*", "0.001"}], ",",
RowBox[{"#1", "[", "\"\<\:7ebf\:6761\:5bc6\:5ea6\>\"", "]"}]}],
"}"}], "&"}], ",",
RowBox[{"(",
RowBox[{"Get", "@",
RowBox[{"FileNameJoin", "[",
RowBox[{"{",
RowBox[{
"\"\<\:6d4b\:8bd5\:6570\:636e\>\"", ",",
"\"\<thedata3.wl\>\""}], "}"}], "]"}]}], ")"}]}], "]"}], ",",
"2", ",", "1"}], "]"}]}], ",", "10"}], "]"}]}], "}"}], ",",
"\[IndentingNewLine]",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
"\"\<\:7ebf\:6761\:5bc6\:5ea6\>\"", ",",
"\"\<\:7075\:654f\:5ea6\>\""}], "}"}], ",",
RowBox[{"{",
RowBox[{"\"\<m\>\"", ",", "\"\<\>\""}], "}"}]}], "}"}]}], ",",
RowBox[{"LabelStyle", "\[Rule]",
RowBox[{"Directive", "[", "20", "]"}]}]}], "]"}]], "Input",
CellLabel->"In[11]:=",ExpressionUUID->"f43fd5d7-1c39-48e6-a7b0-bcee48adbfa1"],
Cell[BoxData[
GraphicsBox[{{{}, {{{}, {},
{RGBColor[0.24720000000000014`, 0.24, 0.6], PointSize[
NCache[
Rational[1, 72], 0.013888888888888888`]], AbsoluteThickness[1.6],
LineBox[CompressedData["
1:eJwtkws0VHkAxq0T2dJuNhV66uGx2rS7tWor31G0FVYjbe1ulNRJW5i2Vsok
1EqbFCmSvIbGq2mGwaB2zcMYhDuvxixSOm3RE42ROO3M9L/nzLnnnjP3+3+P
37XfE+G/z9TExCRE/zPcZ6wLjGHpgvFgu3aROLUXozG/3Tl6ORSMAcuuQeuH
GCsekPvuocM8aSSTc6wb0dbsHx6dOIotRfM+5XZ2kv9HYe0D37QElgbH+xy+
tihj4PrIkil9v3aQ92MhbBRbCyrVWNPjdyE9PB6HAnVs5wkdRO8MHF7MGfBI
UqN2k6Wpy9kELJ/XqW49fp/oJ2KYba7wdFHhe5408u+cvzC4oMkxLkxFzksC
k3+aTb1QgT/3z+c0fjKK9/aYnbqtIudfQsqsgk0RDBWyxPM5v4em4FzAM0/d
ehXxkwqb8LgjqVZKdL4zHoiQ2q3m8Uwl8ZeGgsQ1kr57csxy7V5kHncFtEBd
62MfBfF7FdxsM2dVlBK/7F1tUMS+NHGx/KmS+M9A3lmf1+1tCmReM1740m6I
50BXkDyZaGR0dET3y6Fp0219XHgdr2HD27xMQfJloYVWaLXKTQHbCT999lX5
Dajm7BL7eipI3mw8Sg2z+KNMhh2rjILI/twnJlogJ/lzQd9gku4aKYeP2zmP
3U9ysZHnxNzHkpE+8mC/tCfzXYgCL2gGxTz8uDNBlmAvI/3kY/8da9vwZArn
Dz19XzyQj8gF1W+3P6BIX0zQenljLxNlcDk7Qx+BCbb5nEsDmTLSXwEcNdLA
EQ6FljyvqqHxAgxblq0uYlGkz0K4uc137eFTOKhvy2bCTfhHBjhEnJaRfm9i
W6XHq4MlFCapmfS1k1jgretzn/mBIn2zUJrxL1sUJ0OJIe7UIow69UWdK6BI
/0UImmrFz42jsNkgN6MYe7dsc0+2lJE9inG+X3PfrLUd/Ya6Z5cgrLmLFxbd
TvYpwQltX9OGoHYY2qMWlGKwNSuYr2wje5Wi64zuk1xrCs47Lwq1TmXwivb/
pnd+K9mvDCpvzeSBra1o0qvZud7CJU/xwNLsFrLnLdRwMxxt65txIOUlAyvY
4JjWmviq75F92Zgboxsde9gMvTl95NsY9Ttspk5vInvrn5dtHhqhpAjQw6Of
FF57YqdfmN5E9ufgpOlEL+/DTSjQt6dmcnBUN8U+Y7aU8MCBfFrOyl12Urwd
V0b1OXAR+2QJOzK0kfDBxUa/QpoXpxGeRgC4qHvvmBL+SEJ44WLm05LOk6ck
SLMxBsJdt0OL/xNJCD/lmByAqBMnJfhorxyqf6zkiZIGwlM5eJouK5dNEnxr
vCqgNVv2hfPzBsJXBdIHg54FVotxur5ZT1AFFn9oDq6miwlvFejddeZN0H4x
FPr19Z1gjZmCMeQuIvzxcCo8d/dFrQgLjYI80G+Op7+sExEeeXDND6cO5Itw
JNQwQCX8AhOHD4wKCZ+VmH5LtaihXgiR1km/cCVoh31Vdd4iwmsV6juX277a
LcK0jwbh4Zdj+12GkPBbheSVpb7xSQIY3UmrkNDw5ir7vpDwXA0NvW5qbawQ
5TdesyTe1XDO6a9aYSEkfFeje7hp7MoKIUyNgath7V2Tx5goILzzEW2xZGHW
zwL4fwQG7t0jMzU8AeGfj1nSdyuD2+qRb4ir5CP+2DU7LUtAvocaOK0OiRi/
JsCgQW5HDXq7Wq4OrheQ76MGk+URlxPuCvA/ljwi4A==
"]]},
{RGBColor[0.24720000000000014`, 0.24, 0.6], PointSize[
NCache[
Rational[1, 72], 0.013888888888888888`]], AbsoluteThickness[1.6],
LineBox[CompressedData["
1:eJwtk3lQE2cAxSHFFK1QFKt4ACqQkYq1KEJL1SetJ5R6RDSooCMeVBkRQqmg
rYocKvUAKVhMgIRLkCMESFCrwpKEcBSzSRArAlVG8KIqCpZzuonfzuzsP7vv
e8dv5+wO3bSXZWJiEsTchmfKIOeRi2cQOrb2OyqSH2Po1wN/RlwKhvt424av
HndgpOCN1nf3YVS71LUNZbTj6JSSNY+iI/Ce5/Sds38Hef8IXkauiFkw9QGi
nnFczYuOIZUTamfZfJ98fwI8x7CuSZPvY2nn+nNph2IwztTee8VYK9GLheWq
L6SvPO/hxrqJrPkJ8Zi80ydAENdC9E9D5++UayvVw7NCHXk78yxO1Txs4g63
kPN+Q/GZzsoQuxZU2cW92Fh1Hl0ntxfezNWT8y/CQS7+QXW3BQLFbEl4cBIi
xxDjk9RC/CTDzLak0a1Nh7ZB44EIusFlx2Trib8UDO7k35ea6TFzYbsj++Tv
2LqD96XNkI74TcW+RSvrlJV6bNvzjUERPcKee5Ms9MT/ZZhhUBpipUP6H8YL
oZJ4+yJTHcmTjhGvy2Khhx5/N7/nduVewWnzk+50g5bkE6BbskIvF2sx3WyL
5QKpEIdebZZ+ulpL8mbAf7Gfss1BC97XRkEcNPXveLpIS/JngTfmelag0uJ7
jzNeu55kgWK9tu5K05I+RLCyGLvEEtN4udGgKIJW4TdaclFD+hHDw/3Q+nSK
RmJIz3DBGzEgfrd/dANN+sqGxxXe3iQ3GvMTpjIRspEVGMW795wm/eXAdP8k
s4jVGjSKVsnejuZAlOE562cWTfrMRfi0/kCrGTQOMm3ZmOXhUeqc2RdGNKTf
PPg5c2aFcmlMaM0+vGxCPh66+JbF6WnSdz6OuMQO9MykUWiIa3UV4Y1Thrd5
akj/VyEcyZcd1WvgbZCbWoAd1HK6U6shexRg4u4Bds+yu3huqHtWIUpzvB7S
LA3ZpxBR6+pMujnNMLSnmXsNn3lM5mtvNpO9rkFkverzOyf+gvOOC1T/vCLs
D3u8+V9JM9mvCN2cj8vezmlCPaM2Y2ExnGRL8vrSm8iexQiLt2BzXZvwY1Lv
MSwpQQSde1Xs10T2LcHs/54IbPiNYMwxkUsRa5JVv0/WQPYuxTm6Pnze+Xps
ZuBhJoVTsMPWZaVqsr8EUcMZ5XfP1iOHaa81W4K5DtFLLZPVhAcJ3AQWYWyO
Gu9G9UeeccoQ1/vJUHmlmvBRhmMF8Sz38XVYaQSgDBDk1SWeqyO8lMF18b6E
mAMqpNgYA+FB9LjLbiNKwo8Ue5//0inyVeGDPSlCbQLnZoQpCU9SxL72frl8
ghKLjVc5Gr1v9fU2Kglf5VAHmZo6nlDiVHUDQ1A5MtmiwEGOkvBWjj3mW2Rr
nyqgY9ZnOoGCThsKWKMg/FXguEXAtyV3auFgFKxAbTXfM99ZQXisQHsAOzN5
iQL8YMMAlbAMslvXllpL+KxE0TMbp9u2tajtn8csXAlKbmUh3U4RXmUQBq4p
Ut2hYP3BICL4a/+xv00RfmVgf9QrC/mJgtGdWoa4dh/L5RyK8CxHM9zZ1UkU
pMJX+SofOaytivve9dQQvuXorIluTfSmwDIGlmPsBX+X0JwivFchOSXt8MDN
Gmz6AAyi/Tsjd7lShP8qdPsd57Km10BsiKuvgpQ7bSAhniL/w3XoNhxPa0mq
QZ9BjncdJmmv/RNvVZP/4zpac30aElTV+B+M9gzy
"]]}}, {
{RGBColor[0.24720000000000014`, 0.24, 0.6], PointSize[
NCache[
Rational[1, 72], 0.013888888888888888`]], AbsoluteThickness[1.6]},
{RGBColor[0.24720000000000014`, 0.24, 0.6], PointSize[
NCache[
Rational[1, 72], 0.013888888888888888`]], AbsoluteThickness[1.6]}}, {
{RGBColor[0.24720000000000014`, 0.24, 0.6], PointSize[
NCache[
Rational[1, 72], 0.013888888888888888`]], AbsoluteThickness[1.6]},
{RGBColor[0.24720000000000014`, 0.24, 0.6], PointSize[
NCache[
Rational[1, 72], 0.013888888888888888`]], AbsoluteThickness[
1.6]}, {}, {}, {}}, {
{RGBColor[0.24720000000000014`, 0.24, 0.6], PointSize[
NCache[
Rational[1, 72], 0.013888888888888888`]], AbsoluteThickness[1.6]},
{RGBColor[0.24720000000000014`, 0.24, 0.6], PointSize[
NCache[
Rational[1, 72], 0.013888888888888888`]], AbsoluteThickness[
1.6]}, {}, {}, {}}}, {{}, {}}},
GeometricTransformationBox[{{}, {{{}, {},
{RGBColor[0.6, 0.24, 0.4428931686004542], PointSize[
NCache[
Rational[1, 60], 0.016666666666666666`]], AbsoluteThickness[1.6],
LineBox[CompressedData["
1:eJwdlHs0lHkYx4eGhtxJkqToqklKJ6KepEKXk8uSlZNO2Wpn22qd1ka2Ykgm
t5IplxiXSYyMy8ygld+zurBOIWc2G6loq92NjaWGlPb9vb9z3vP+9z3P9/N9
vs/8/ccCvtHmcDjBzEf/+vcieh/YJkL9ZIPrumQ7tHHqc9CNSwT5v9naOvXW
GBrh/nxXahK031rkh+4WmJNNXzJ0DcWrXwVbY0+7JvCl9AKciFYtXqixQCtu
sBG/JhXOOkkKx6UzcLebojWqKR3mFPU5j+2ahtvXJnvue5UBh/J+2/h7jxje
+tfbJr69CIbrT8a7LuDhhSNvJstGLsEy6QYHjlwPlydZPmnXZILZugjv5ngu
Pijcohr9fBn86uMPfhqahoLGE5lWXDHMiPv269gQU9TvLj6+Xv8KvEqTL3VJ
mCLlI10795tcBc1fw7NnZhjiNgNtxyTLbFDzJ46ejZmO/yxy5lXY5EDKsOZs
h5suipjpOhfkQqPowCkhn4fLwtKb3y/Jg3DzWYmtrtrYFtVUYO10DWKGvYQr
/tRCwcWhWFiTD2vjDjiGJRihfoUNg6wAlmWmppepjDDopTT3rp0Erk71ZHVH
amMJM113sQQsjIMEL15o4ehn9cm/FxWCwGcgZfWjfuLFAigE/5iOdxm7pmMm
C7QIWqWasTm/fCasXFURbNoabfPHIBddVtNXDMLNlw9lz+RiArYxhIph1vuv
OnOqnxE14z7ErQQGlyzN1BR8AYfeidOCxhIoHe2pFHgPk8jD1IAUhiZ6C5+u
mSSMWcaxFN5OnLb1uDtAzIRU8DqkbmpwMd89SaiaovU6HN0iS0vZM0xqrr0r
vb+9FESH/cBeM04o3SftpfBwtrWtPEAPA2i8/jdAqhPZPBu4WETjU9+A9yWP
Z8yfZYL/0XhCymDwu9tZSiNj3ETx95ZBSKPQ3Y9rjpco3r3lkO+hqOWa8nAg
xqLSu78cbl6XN/fPNMVVPApcBnyT5pTQHBOMz6IEZaAlfm0pqp2OXQuo4Qoo
9TonyL9ignZV1HEFnOEfr5PcMkA2juM3Qb51m8b/jRmy+EZvwhfLNKnVrzxk
7UZVQvbYlh2xdubIjjdRCX1F3R2i1zxk5WLlMLhQR9ESwkMO+6rgTKSOLHSu
Cd64Tze+CtIN3KfSBgzRL/XKUTNhFTxM26tb/qMxjgfSRKsg/I6OquGCIUqs
aQGrQRmRY+UbyEWffmq4GjxXPdKz9+TicCkVrAbR5od95+0NkKphWzU4+zx9
4BushQysW74GNaDYt8OjJYWDtE1dO2uAbx+23chDF9PZgGugoy/cVZz7kbB1
7KyBjB/yPPOjuMiUnZGshTLHaHmljIPnaf0Ca8FLfM30TcsHspKeh6xaaA17
LG1a/pGwdeuuhbV78nKFKzTkDFtIBZwLGmnwNRgni2m9QhUwJo7aE/WzDnbQ
c5GrAB+JyN97lRb+ROvUp4BLToGyfNspMi+RXgQlzL0jGb+dO0Va2IOhBJvv
lXrG+R/JMXYhlRBu2fbcK3aIsOO9VEKBZHWcy5pPhJVzUMG7uf5N6gkNOcg+
FQR0BjzViRwlzHFiNlYFHaV+fhu3jhAVW0AVJKp9ZM+SkFB62o51MH7kbpC4
ZIwwZpmFqgP+4ZWndtfdI8zyMYHUwdhBlWmz22sSzArWQfTIifaGvBEyRevs
XA/JCWODG458IP8Dsduusw==
"]]}},
{RGBColor[0.6, 0.24, 0.4428931686004542], PointSize[
NCache[
Rational[1, 60], 0.016666666666666666`]], AbsoluteThickness[1.6]}, {
{RGBColor[0.6, 0.24, 0.4428931686004542], PointSize[
NCache[
Rational[1, 60], 0.016666666666666666`]], AbsoluteThickness[
1.6]}, {}}, {
{RGBColor[0.6, 0.24, 0.4428931686004542], PointSize[
NCache[
Rational[1, 60], 0.016666666666666666`]], AbsoluteThickness[
1.6]}, {}}}, {{}, {}}}, {{{1., 0.}, {0., 0.05665590748106922}}, {0.,
0.46843230763963317`}}]},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->False,
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->True,
FrameLabel->{{
FormBox["\"\:7ebf\:6761\:5bc6\:5ea6\"", TraditionalForm],
FormBox["\"\:7075\:654f\:5ea6\"", TraditionalForm]}, {
FormBox["\"m\"", TraditionalForm],
FormBox["\"\"", TraditionalForm]}},
FrameStyle->{{
RGBColor[0.24720000000000014`, 0.24, 0.6],
RGBColor[0.6, 0.24, 0.4428931686004542]}, {Automatic, Automatic}},
FrameTicks->{{{{0.,
FormBox["0.`", TraditionalForm]}, {0.2,
FormBox["0.2`", TraditionalForm]}, {0.4,
FormBox["0.4`", TraditionalForm]}, {0.6,
FormBox["0.6`", TraditionalForm]}}, {{0.,
FormBox[
"\"\\!\\(\\*TagBox[InterpretationBox[\\\"\\\\\\\"-8.3\\\\\\\"\\\", \
-8.26802232046417`, Rule[AutoDelete, True]], Function[NumberForm[Slot[1], \
2]]]\\)\"", TraditionalForm]}, {0.2,
FormBox[
"\"\\!\\(\\*TagBox[InterpretationBox[\\\"\\\\\\\"-4.7\\\\\\\"\\\", \
-4.737940306213012`, Rule[AutoDelete, True]], Function[NumberForm[Slot[1], \
2]]]\\)\"", TraditionalForm]}, {0.4,
FormBox[
"\"\\!\\(\\*TagBox[InterpretationBox[\\\"\\\\\\\"-1.2\\\\\\\"\\\", \
-1.2078582919618555`, Rule[AutoDelete, True]], Function[NumberForm[Slot[1], \
2]]]\\)\"", TraditionalForm]}, {0.6,
FormBox[
"\"\\!\\(\\*TagBox[InterpretationBox[\\\"\\\\\\\"2.3\\\\\\\"\\\", \
2.3222237222893014`, Rule[AutoDelete, True]], Function[NumberForm[Slot[1], \
2]]]\\)\"", TraditionalForm]}}}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImageSize->{543., Automatic},
LabelStyle->Directive[20],
Method->{
"OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& )}},
PlotRange->{{0, 0.1}, {0, 0.5804157945483401}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.02],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellLabel->"Out[11]=",ExpressionUUID->"14858d87-58d3-4911-a7c6-e4626a641b79"]
}, Open ]],
Cell[BoxData[
RowBox[{
RowBox[{"TwoAxisPlot", "[",
RowBox[{
RowBox[{"{",
RowBox[{"f_", ",", "g_"}], "}"}], ",",
RowBox[{"{",
RowBox[{"x_", ",", "x1_", ",", "x2_"}], "}"}], ",",
RowBox[{"p", ":",
RowBox[{"OptionsPattern", "[", "]"}]}]}], "]"}], ":=",
RowBox[{"Module", "[",
RowBox[{
RowBox[{"{",
RowBox[{
"fgraph", ",", "ggraph", ",", "frange", ",", "grange", ",", "fticks",
",", "gticks"}], "}"}], ",",
RowBox[{
RowBox[{
RowBox[{"{",
RowBox[{"fgraph", ",", "ggraph"}], "}"}], "=",
RowBox[{"MapIndexed", "[",
RowBox[{
RowBox[{
RowBox[{"Plot", "[",
RowBox[{"#", ",",
RowBox[{"{",
RowBox[{"x", ",", "x1", ",", "x2"}], "}"}], ",",
RowBox[{"Axes", "\[Rule]", "True"}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{
RowBox[{"ColorData", "[", "1", "]"}], "[",
RowBox[{"#2", "[",
RowBox[{"[", "1", "]"}], "]"}], "]"}]}]}], "]"}], "&"}], ",",
RowBox[{"{",
RowBox[{"f", ",", "g"}], "}"}]}], "]"}]}], ";",
RowBox[{
RowBox[{"{",
RowBox[{"frange", ",", "grange"}], "}"}], "=",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"PlotRange", "/.",
RowBox[{"AbsoluteOptions", "[",
RowBox[{"#", ",", "PlotRange"}], "]"}]}], ")"}], "[",
RowBox[{"[", "2", "]"}], "]"}], "&"}], "/@",
RowBox[{"{",
RowBox[{"fgraph", ",", "ggraph"}], "}"}]}]}], ";",
RowBox[{"fticks", "=",
RowBox[{"N", "@",
RowBox[{"FindDivisions", "[",
RowBox[{"frange", ",", "5"}], "]"}]}]}], ";", "\[IndentingNewLine]",
RowBox[{"gticks", "=",
RowBox[{"Quiet", "@",
RowBox[{"Transpose", "@",
RowBox[{"{",
RowBox[{"fticks", ",",
RowBox[{
RowBox[{
RowBox[{"ToString", "[",
RowBox[{
RowBox[{"NumberForm", "[",
RowBox[{
RowBox[{"Chop", "[",
RowBox[{"#", ",",
RowBox[{"10", "^",
RowBox[{"-", "5"}]}]}], "]"}], ",", "2"}], "]"}], ",",
"StandardForm"}], "]"}], "&"}], "/@",
RowBox[{"Rescale", "[",
RowBox[{"fticks", ",", "frange", ",", "grange"}], "]"}]}]}],
"}"}]}]}]}], ";", "\[IndentingNewLine]",
RowBox[{"Show", "[",
RowBox[{"fgraph", ",",
RowBox[{"ggraph", "/.",
RowBox[{
RowBox[{"Graphics", "[",
RowBox[{"graph_", ",", "s___"}], "]"}], "\[RuleDelayed]",
RowBox[{"Graphics", "[",
RowBox[{
RowBox[{"GeometricTransformation", "[",
RowBox[{"graph", ",",
RowBox[{"RescalingTransform", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", "1"}], "}"}], ",", "grange"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", "1"}], "}"}], ",", "frange"}], "}"}]}],
"]"}]}], "]"}], ",", "s"}], "]"}]}]}], ",",
RowBox[{"Axes", "\[Rule]", "False"}], ",",
RowBox[{"Frame", "\[Rule]", "True"}], ",",
RowBox[{"FrameStyle", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"ColorData", "[", "1", "]"}], "/@",
RowBox[{"{",
RowBox[{"1", ",", "2"}], "}"}]}], ",",
RowBox[{"{",
RowBox[{"Automatic", ",", "Automatic"}], "}"}]}], "}"}]}], ",",
RowBox[{"FrameTicks", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"fticks", ",", "gticks"}], "}"}], ",",
RowBox[{"{",
RowBox[{"Automatic", ",", "Automatic"}], "}"}]}], "}"}]}], ",",
"p"}], "]"}]}]}], "]"}]}]], "Input",
CellLabel->"In[1]:=",ExpressionUUID->"336a2da4-ec7f-4f9f-9095-4057d1e9461b"],
Cell[BoxData[
RowBox[{"TwoAxisPlot", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Sin", "[", "x", "]"}], ",",
RowBox[{"3",
RowBox[{"Cos", "[", "x", "]"}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",", "10."}], "}"}]}], "]"}]], "Input",
CellLabel->"In[2]:=",ExpressionUUID->"8776ee3a-f231-4cb8-a46b-df3a5e721378"],
Cell[BoxData[
GraphicsBox[{{{{}, {},
TagBox[
{RGBColor[0.24720000000000014`, 0.24, 0.6], AbsoluteThickness[1.6],
Opacity[1.], LineBox[CompressedData["
1:eJwV2HlYTN8bAPD2oqJm2reZlKJoF5LeFwmRskRRpJUSCdGKviQkFKkook2h
RVKoW7SQJLRJ0r5MM3NH2kv97u+fmefzPPfMOeddzrnPqLse3+khwMfHt4L6
+P+34Y1rL9LS4iB59l9kueUN4qzWOOvRxwRYvsOdqJ6JJMpKXBc95NyHiSOK
jV8LwgntsfubPyemwNMMd1+h24eJQs1Tr6q7MiArhP9i9WQ4sPCW9YHV+XBk
icRdzW0pIJoMS3Z9LIVRgaiguWUvQX1Z3YnkkU8g/rTiubtANRzreLi/Kv4n
7N7l0tkd1ALVzW2Oikt6IPzN1ZecD53gYiYQLLauB0pVX+i5/OqEifva98cd
e2DdBvyv+k8nLHH1b2+81gPjFwWun1Lqgki2qFsM2QPfyyc+Wvl0wWZ+46Pi
r3phNI5jWj6/G2p0roT929gP1tui3hRjD9SFrnjc6caCtodOXw0i+gDHez5w
wliwfNvU77/xffDC7zZ3MoEFenLOfunZfRDv9nc1rZ4Fzd4LO3/U94Hblrz6
9eZDEPJD4sZZpX6YkFk++1iGDW1/u7OvZPWD+lNNR89KDux7svZXSskA3F7c
EObfwYFdwprLzesGQOTBf6lh0xwI8R/zrmgfAPatLjLOkAuv5fQuJM8NQOGZ
hxHVSVzItPKoP4ODYL1BpWBJAAlOYhUDBaWDYMa5cvl0LA9GZisMxJ+xYELs
7g2ZhzzYvHnUed9rFhRqpt598ZQHvvJ59+KrWWDkVJrxp5IHHrd/a3d1skDn
03C17wQPFMLHkjNlh0D5yX4xT+c/8HwVa95M4BDMuC+/skd7GFx+FspdXsGG
1+fNbo0aD8MaEYflT5ANZ+9vSriNw1Cbkn6oeCsbRr4fevLNcRhO8NWJph5i
A3t93MftUcMgb7EhKiWKDb+Yc/M2/RkGq6DwrJW/2VDaVn915Zu/QGqImqQG
cGBQUEO298NfELSL3GV2ngMyuqcfxDT9BZ2rZyNfX+GAT6BiAefPX3jpwpML
vM8BBTnXX4+XjIC2xQdRbhkHTtr+1ZeKG4E0O7ugPGEuJAdsfF3yeATU5T59
65XkQk3SXUufvBGweLLsh6AcF5jsNY5VtSOgSp9qnlnMhbrIi+EhgqOw0Tpr
utOSC0veyTYO+I1CUN9NvlNhXNg16HUwLmwUorVPxeIlLoRJvR7cEDUK9Aah
0LFrXGg8cGA2OWMUtFamoFoCF8Kn07Xt20fhXsxVIed8LjxfNJknwB6FtVVL
q08WceHHlq3muZOjsDVL/M3JUi4YxJN24rJjUGWjtli/hgu/TFYFlW8dg0S7
xmuxHVwQc7oqdNxxDNpLfA797eWCyX9t0SpeYyD5WWiT+RAXrn49//hM+Bg0
1rUZXRnlwqpjH2uXF4/BwbWLFi+cR4LbHeW9P6vGYP/OPbRXkiREv/XtjGwY
g52vQ4c30UjonU8b6ybHoOG/A2GayiTEZOxjJGqNQ8ERps8HXRLMvPo/i5qM
A6KYb5o+CV1ap0JOrxsHYcsNjKPGJBinX/9h5zQOa5vUrhaakdCQWhYrGjMO
ZqpfjWAzCSHuNutPPxgHnQNb/I5sJUFTs5XX9XQcDgtEWIduJ+H04782pdXj
8MYnt/bQbhLkHmmJnf43DiPrJutUD5JQeuhFYdf8Cdj53r749iESPNXRw05h
Al4u/GEw6kbCq4eO73SNJyDqbF6Z/2ESXFz6/BJwAu62tDXe8CZBjHmSIbp9
AqSu/zwRd5QEhwdRIV2HJ2Dh7WerXPxI4DuoqGsXMAF3Pje6aPiTkKmW/qPk
vwnw0Q2eX3+SBLt2o0jdWxPQ/Oa4iedpEiaTCNOE5AlY5nnnVy/Vl4+ct/WK
PJ2A2KFfQrZnSbBW/RF7qngCPvZbP0kJJCHx/jDPtmEC0mb6PQRDSFjvdO5B
SecElN31DqGFksBSltiuS07A+5xCCfEwKv4/42fiZyZgWE9VjkN5zb3F2SLz
JyHn1+zdonMk9OzLdzwlPwmka+0t3/MkRCmBWJfmJCRaighKXCDBpPVToa3R
JPT3mw/FUm5LcPAogUnIviVlLRxOwkXHXrquzSQkeRoyXCgvU/R/F79vEq75
HPROpdzQMusncngSrl7y1v1GOTT+GuPU6UlQCDJyHaSs5aBQ1xk+CYZk+gIW
5Tr5tBDbm5Ow36faoIFyQLOhbknSJGTYP/6QQVntbukPnWzKo45N7pSr9myN
jC+ahN0nlfaJUz4m12IqUjUJw00au+9R65Vrcu89+X0SOsUqK2QoE3f+xHZ2
TILbV6enZ6j9HrYPW2/LnQSXFkfxCioeUrLif95OT4J0mlnXJBWvooa7D3Tm
TUFW0nVDRcoutzW3x8tNwajIn0l1Kt5iu/NmhDWnoE+Qbi5D5SOXbpF90nAK
FO/kTZBBVH18r3HstJiCXfGJBi+p/PHF7hWz3TYF3OrsHjcqv5k7ewrfOk6B
xetvsjNU/u1oJzx0vKZgoEOiMpSqj5RbV98Jh0+BedNcylqqnrbnbvOMip6C
fw0vyxOpepuuWzCffm8KDLs6bXuOkWAvEbuDWTAFdwR/vjH3IUFA1340vWwK
RM713tt6hIScLfIJyz9PgVhTB9fKi4R5l+91mPVNgXpx5rAAVf+Fac4Xy4en
4FYkLf29C9XvFYwlm+emIKMo46vfARJK+FOP2ytMA8ufdvemIwknQp7OHree
hqGq18J9VP+p3Tv2aGzPNKis+5c6fxsJn4oNrELdpuFOoNpH5S0kLB4vuH41
ZBoKWlZnCG4g4ceJEpW059Pweq8ib3AFCRE3z5XpvpmGcP0NQ/5G1HmQs849
v3oaAsyngwb0SLjOrswmOqjfE6t3SdAmYZ1XnVkrbQbW/Xh7iaZAAvfSzXYX
xgzwH3/pzidDwr3UneH9ujPQ7trLal1Iwmhn08cRyxl4cl593F6UhCdOvx0W
npmBO09UHN2p8056Jy/A8ucM6L0Lft3zmQulfvlKn/pnwJ9Vujf5Axd8bpwq
3TEyA40jR2ss33OhsnZC+KDkP7AeNlrrQJ3HgZv47wTCP3i8XeFVQgoXOs1p
L54//gf/tlsoXPXjwoyn4o8Nef9AoPmgbsQRLsjdYs61lP6Dg8tfTvq4csG6
V2+rYOs/uHPyYtvILi4UXN/avVdqFr68HrOZWcGFiPaLdP7QWbhmd/953ygH
HopFrY67Ogta+Zqz5zkceG0Ue1A3fhZKhNe5CvdygIxIybZ/MQtWRsXna79z
wEG/dEPW4CwYyxZU7s7lgM758ZO79sxB2w1CeZcHByyzZhMG3OZgYNX5glv7
OXCgQbgs9MQcLBicq3m9gwOxS2QkMqPmIKw383rtWg7M1BukzrybA72KKWNS
hgP9UitY3+T58BI/58pKgg3Fh44phVzkw6MXi9LFhdiwOV1iyferfNiq0aIf
MjEELaysFTq3+JCZof2jlT0EEyf77VqS+LDcO+GJa+MQmEa4XDZ5xYc0MSnp
pLQhyM/aOcIe5MN3ptIJ79cPQdZf0zpnW34U+9NducCPBYmX5i6AkgBeUhjL
CoofgMNyb1ICmAJ4R6x6h+CVATDNCCh/piWAjzR6foUEDsC3Dxw+FWMBnG28
/Gn9vgGYL9F2bmKrAOYoywgrKw9AUExRaF6oAE76l+0STuwHxwcnAjU6BXCq
77KlyPU+UCju9hPNFMSulSOvZrb0gMW+I5kP9gpjjKdVqUzQL5j5mRixhyWC
C3qW/T7b8xVcP/k++5UshptY779eVM0Hz5rY/Ue2zsdq5QynbU/LCYEsj1z6
T3H8ZdH1foqvkbAab7GJjpJE+et/ClufdBCzJwfzO2Ik0a1zlVMG0UG85E3K
GydIovCkSuuRxg5Ck6XU1ZwmiRvCvJbW83USAr+cAtQJSSz7x7zH3NtJlLzr
SC74I4nLJJznVfJ3ESbRA2TrngW4P9vYjdjeTSxaPHFLW30h6l04Opxd0Uvc
1NZdxb9kIV6LdOFX/tFLzC490N6qtxCFTi32CuL0Eq16FTrR5gux9pnv9Dy5
PiJm1c33I3sXonzgrQxvzz5CcNuS0fLohViSvn/1YqF+osffwcFpZiG2su5J
KRsPEE9eb5xL5JfCNLFRztmNA0THmoPfRIWlsPTvhv2VeweI7RYxZzvFpdDM
f3Hu0pABQmfDRMVtRSn8T+FMnVrFANG1rcJ52kQKs4B0y7EbJHa5ON344COF
eTlFbVJOLCLr8kWfxcelUD9CtrfNh0Xw5TzdFO4vhWv7wxLiglnE038zc2sC
pdAlZWHrt0QWIXIvyS8nQgr59ZZF+LawiKLG9h1xKVLocNdPdpHdEKGy9ZCM
e7MUfggQ1ABDNuHvf4VX1iqFXU4Gmk8t2MSHhLxa1XYpLJE/d1l4G5s4PcB/
qblHCmn837eHerKJukuPRq2HpVDxUdzPc4ls4nxZd5OhpDTWCF4b/TDLJnpW
eCbMrZfGwu7ZHXpFHGKm4Gf+IitplNOZy9n/jkPQTXbUbtwijct0RiXO1HKI
9Ubmc9dspVH6Lpl1poNDPNSjeSg4SWNP7odPD0S5xH7tUgPD09I4mjrmHbGT
S/inG1vvPiuNcwU5fTf3c4mri5+4nQmWxhmuuuAVdy5RpHE7ruSCNPqSumLr
A7iEHNN7Zku0NCo2a2U3xXOJbwpyH1wzpPEG7drbS61cgnX3WuelLGksgMwq
ry4uwS/PP535jHreLVptJYtLGMiyl5MvpDFp9Epq0iSXiJZ+FxtcJo1jvjGX
rsiThPX8Ywdv/5BGgV8BqS22JOF6pfvsqzZpbJT543Z9D0kEijnGtP6WRr+j
75fqO5NEpohlJbNPGs3FdItWe5OEiKCS7rNhaTx27rmf938kUT5dOVYpTsM9
p3DGNJ8kCkpqc5ctpKF06qYtBkUkkX7uu3csjYYOYxf46aUkESXY2e6iSEOV
rMRHtz+ShIP4TNW0Fg13XjUzifxNEls/C1xw1aHhq+9WXrU9JGFxY96aj8tp
+FdkY+/kIElo0OVz4kxouEVS74XUCElwlYzuGq6nYVvuaHycII/obFu1I34j
DSv807N/CfOIhmQQn9tMQ8mBt/aKYjyieJHNuVpbGu5ueHbkmASPuKhz2MvL
mYZxgf4eN2R4xBn2MfU6Fxom9g6KBsvxCO/np3+auNMw5sn7FfsVeISt0X+2
Aj40TC1brTepzCOUzJJXJp2lYTtz3bHsRTxCcib1j2AINZ/No01rNHkEX2l2
tvc5Gr6+fOoRsZhH9K4rZqyKoKHyFumWtCU8okWw7EfyFRrWL32fK6rDI2oq
q2KFr9Mwqq5A5IAuj8jd0iD6PZaGPx5c0BpYziMei/8sX32XhhvfRHCV9XlE
3OfO4IeJ1H4DGQaWBjwieAdJ+qZQ8XF7o+JvxCOO0ceeNKTS0FJbt+qMMY9w
aZxxW5NJQ+dy0b4TJjzCynF+i1gODRcdMY/YYMojVitLxxzPp6FM7QZh5ZU8
Ytkv+W1NL2mYlis30UdZ7YGayNpiGq58qH4gYxWPkD60uOzxWyrfYT9MnVbz
CCGNZUHzy2hYcvnNBWEzHjHWY2Ry4j0ND9vbWDymPJi+mttcRUPzVpWjK9bw
iLbDmGlRQ8N897L5byl/0dnkmvaZhq3JTYorzXnEO7aNisRXGmZFiySkUy54
vrvJv4GGq+LmLs9fyyMy/Pbf/NFM1cfJwD5XyolGrtb4k8rHepOCHMpRI4eF
MtppWBw0weNRPld4vFSyi4ZLeHH3tSx4hP/ZgLOneqn6aRgotKOsFVNzPGWA
hmdqp277Um7NVvOqG6Kht4qv83nK0ZX+B6a5NBzjGEtdobz+d5X9kmEa3q7c
8uwy5bEJJRv7URpOhOeYhFDOoh23DJ+g4YJDR9M9KR9Y9n5NzjQNZ0avC2yi
TLOSN26bpSHNeMkWVcpVB3105gnQ8Z27fdAgtd6gQELdVJiOUUamcdmU9WLp
im5idOQm/7nvRrnrqZfUTXE6bhZ9GS1NOa7qjWjJAjqWaxT4vKTiZd2xcG5Q
mo6aoktNbCnPTrqNycnSsUxt90A7Fe88ehFngwIdVxmFRLpTdl8u0eunTMeD
blyZDipfCptc2pLU6CigN3t9B+XzQWKfxjXpGAfum+SofJvcdnqnuYSOyhYX
Io9Q9TDwLLd4hy4dP1h+fJVP1Ytdp0NmtiEdHZ8+69Ki6kto+umDFhM6qlzb
8HvHCh5RJMN/V3gVHTV8xz/5U/XI3Pzk0kELOq6f+XMmjqpf3vNJV/pWOu65
sUjXQ49HpH6w2Yfb6Vhx+GgxUP3g0JWyw3cHHb2jWeZSy3hEmaw1Vu+lvPKy
VuxSHnEzJFE12J3a7/W3iUyqHy3juDKZXnScEhwfyKL6dSJnvUSjNx0d1KWN
ddWp/uhmTemdoGOVWH6ppBqPMLBe09IVSq3vW8aXffI8osftxpeFF+hoF1ug
cEeWR8SHdleZX6Tj+f0dHpV0qt/zrr2Mu0rHCadl0mJSPKJevi3G+i4dU94q
fpalzp/jvSE2+bl0HDsyN5rBJon1ab9tvrygY/b0ppCxfpKQ81i/nV1IR46t
7ZRhN0m87RG11Sqho8Ia48HjP0hCrCfGLvEjHW+0CPaJVpLEo67MXeFddEyt
VGZkx5PE6Ufiux/00nH3J/E7NTEksdn12O63A9T4+btMm6NIguw0th/j0jGN
6zyv6DxJmHeW7vGepqOx7SLHeC+SaPzd4LhTRga7he8INBtS5/+DlfuOy8vg
/nqf8Rodkgg5mLgvSkkGzeYS9jzVIIlFvw/ur2JSttzssVKWJI61s5zMlsvg
/fqTcHycS4j94nNZZCWDHruEB44UcYk1rcs8h8/I4JBl/L5ny6j7rI0puitY
BmW+GqyKWsQl4n/LZL4Ik8HF938P2ytwidGemcFTl2Swbv9zlSxBLpFD1vqO
x8igOu2B9J4fHEJD2Pf0zDMZpN131Ht/nkOIGzy7KNIjgyk7/j3RKWMTr41S
Fnv1y+AtUw3PUy/YxOEVd6qqWTL4wEteOCudTVSahYpd+SODSu3DC39EsYlz
G22ixOdk0OqhrdMmBzbxdx8nVkpJFp9+nCfrOzRE/Ly0/LGSnSxe8O6jLRIc
ovrr2IV1u2RRTmhhyuwIi3htlnvw8B5ZfKluWlbTxyISSSOVQidZbP3ypcGw
hkU4OK66s+OILNqsS7Azv8kimpZtuBwZLovG/N1h1oos4ut3B5+xAlmU31Or
cZ0xSFSrXzT+piiH5KPNeU2zfQSN2JNvriqHdgsa3A4N9RHOTksNM5hy6HbH
9/XP5j7ib1ydXoi2HKbuqIl6kNtHMCQUdbRWyCHeLtnrcaiPODP2jBlkJ4cW
BndXjxG9hPanZslFl+XwRI0c486JHuLyKd2BEyNyqJQ33aqT1UnI2YZ00D/J
48+Bd7WX9zYTfxQ1lm2MVUBX2T3L6yKriIf3lO4fOKqImkLm9l/mP4L7kocP
iq5UwjYpa1uhS5/BU/SgZ/4/JcxMSkl5fbQVhIrSb21sVMbdTnM2E3+7IFIv
Rdm7RRljYqKvskS7QSLtXlr0T2Ucdg19Xa/cDfSYm8XNncooVnPg/dkN3bDo
aFDnEa4ynraT1zCN6QZgbjeMFlVB4eKQ8P3LeyAocrS+abUKzoZOJ/xz7IXZ
WXLftLkKvkq/MX/v0V64cJrVw0AVPGV/ZuRRWC9Euv6eOGylgpcNVERpj3vh
rvlH5vROFVzHjuZsHeqFAt59P8ZRFdTJi5q3OLAPSAdLqcPJKvjLauAu82o/
bKfVm9WnqKBKEmNS/n4/PP2032NVmgryswR+/3vWD94WJ1+LPVVBu0yW0J2v
/dCn8cj9SbEKylU22pHyA9DOnStiNaggu2VB/eaUAai7+OaQr7gqmoXN7Fyd
PgjLLTZFNS5QxXWXdFQHXw5C1Pi3wrU0VWT/+tV7qXIQrL1Z4gsUVfHwq9sb
I3oGocpWsfC5liq6MaKEUtRZUKp0Zj5vnSrO2ud3mMSz4Hmu0Qv/s6p4zbJ9
4lrAENSViyunBKti4YyfWH/4EHC/9YR/CVPFQKakq8GNIdAfjdu57JIqfq/c
03A9YwhyV0//6b2liuPlDu3+zUOQ9+69gWO2KvroBYy1G7Ph2/f78Zefq2JZ
SqGSMrBhuOc0X2GeKnpqjUpvtGaDkeiSelqRKl7qX+Xs6sKG/K1Rx2srVFEy
Y+Jx+TU2FDTsfg7tqvhpy2Z+yd9saOhdLnesUxXl2vYwNAbZMDImEna/RxVH
Xjalav1lg4lisc0kSxXvCXTUjopw4KWzKid/XBW3laV1vVjOgcK+Xl0taTWc
9IKWJ2c4UDwR8ETCUg0LfxtP7P7HgYmcA0q6m9SwXHZYsU+IC6u8rK5tsVbD
qzJHc9wluFDYKOsbYaeG7wbcNXSUuVCQX2DA56yGgcJJ+Y0ruZB7dPjV39Nq
mLef+zTblws8jdYltEA1nKfqxUc7xQX9n+UJBiFqeKZc6KJHEBeeb7kV7Buu
hn4ZeyUaIriQrWUA/dFqGCwdUlSXzIX0Dt+q1gw13J58zHnlJy703bVfOZml
hs3pFbPH6rmw2HZtpvxzNVwkpBAf28iF1BKJq7sL1HB1MKY//s2FlMRsm7oy
Nfy+u/dn+zAXOnbElrLfq2Hi/EUDoeNcYM4L1hevVsOIufsN82a4kHzGWnrz
ZzWMK7HeMCBEwv3dgw3lP9Rwam5mGSFLQpv4140dbWq479MOXoUiCcrviwpn
f6thfpPkuVeqJCQaRsav6VPDJR+Xj7ouJiF+gbbTy2E19HZ9LfjdmISWygWf
v4+qYSmR2mmxkgT50LG1wxNqaPBgfuBdMxLihioZ+nNquCDQsHbBOhJiP7h3
Z4oz8Pqpls+yNiQ8f/drZP5CBooY0wM17Ej48HaPiC+NgXUdz92VdpEwm7t5
qaEiA9d/TRp570CCQna5WawKA5m6PbcD9pNgnGa2bZTBwKS0E760AyQcTlh2
vFiLgX4u04SwGwn/xaadV9ZhoJOMr6mzBwnJ19ViQpczMPGbVHuSFwnfL0i9
XGfCwE/vo163+pDADb5S9XglAy1IJ3aTLwliAQItwmsYuFTBdsvb4yRYeI9M
fVzHwKlh83PrT5Lg6O4rsWwjAycsX9h3nyLh1IE+1ejNDDzehDt9A0iIdjio
z9vKQKPvn052nCHhyc4W3GnLwJAy62LzQBIqtu3YWbCTgQ9DK9TDg0hot6px
k9vDoN6v7J7mBpMwiRtOn3VkYEy2rMOHEBJk1ryNaHViYM7jbZofQ0nQX7Ei
3tyFgSeD10q9CCPBWv/5k2Q3Btq3o3LEORLcl2q/4fNi4JFGwnL9eRLOaTys
dfWm4lttHNVPOVFVsb3Cl4FiwVp/Tl8goUA+htQ6wcD9dKOTHMpfpMX5r5xi
oLQMP217OAks8Yu0oTMMfHVw++e7lIVF/mnYBDPQdlVvag1lJl/AipwwBp6B
lPg+ymZTXCvpcAaGBRzLHKJsP+LlcPISA4MttjT8oOzH7TjSGMlAKwcLlTzK
Vwccg1dGUeN7vM+foJzW9S0q4QYDrd1m+JQpl7VtTZ6OYeClAoPkZ9T6fjZV
5DjHMXCz/B6HpZTH6teWEwkMbFz6ST+a2p/Up8Jv6knU+gZnNduoeOhW6vf8
95CBHnl+q+iUrYjM0d7HDJxbk+tt/P//o4vVRTdnMPDrQ+e35lR8g18kKmRl
MXBg91I9fSr+cc/oOhLPGWis01A2n8pPXkbUmmN5DCS365/+QuWzNkXYpr6A
gco2KttCz5LAHzd+/PYbBsZW/Odx+zQJKjf9LoyVMjBdjp71j6of06uDMQ7v
GLh62FnWzp+Eo2E/X6p8ZKBvlaBH7jESIs7urg6rZeADh7GtpUdJSPH/3NLx
hYG3074feOlNQpMnMZ3axEAfa8MFBz1JWGf7eN1y6gbcV2xR9tCJmi/lyE37
fqpflmZu1dpHwsSw/u9QFgMPD8nzxe8lITfubUgdj4El4adZsJPKX3vjq+P/
qOdv1IykWFH9J79dcBsfEytv541HbiCBjXk6HfxMrFpZaOiEVL/GnAkUE2Zi
kfuCXdWrSThvKiTvKM7Ebzc8L+XqknDsoJcFR4KJBS52wZPaJDhF1nhcWMBE
mXkXi/U0SVjVerPgiTQTt6dtVjigQgIvVHXnlDwT7WpOpdaLk3Cw0vT6PU0m
xofObBbt58I2bkKBvhYTR5a2T8p2ccFM/t/P99pMtH53R036FxfkjrzXYesw
8YuZbH3tNy7USdh9MDdkooVqz/J9JVyw2H1EsH0tE3d+l/j6JZoLy0JrdfyB
iV8DFu/IiOSCUrr+TpF1TDx25XOITzgXxsZHH+pZMtHs6KG+4tPU+X4v3OKc
NTX+sa3/8f1cUOu+F8jcy8RDe5xo6zS4EPRs04kmByaqsq+UWFH3SeOZv4ej
9jHxgUC6sCmdC1ESWx0mnJlov8r+4lcBLkyvmDKtd2fixc7vPTMdHGiJdBg5
58/E7q39eToJHDDZJcRecYqJSV+b6Z9vcOCGam730Gkmem6rPOsYwQGrfNHv
ewOZmC29w8vgJHU//izM0z/PxAnjivvNWzkQoyd7/Pd1Jkrj9hrpSTZwJ8o8
79xgoqTwxNu9XDZseX/0wNZbTKyWfr8kspsNfA4VNq9uM/GxzIlrmZ/ZcPzC
yWU37jFxd03kgYGHbNjW8HXQ4gkTRbq+BvpsYINwULR7cgUTJf6yH709OwR+
d8tdtlUxUW67wauHPkPQVjDiNFXNRJvDLionDgxBPrnPfs8naj911bNNG4bg
gIe21YJvTPyTdF63SHIIiuzKtMN+M7FPnXmzJYkFR7WHWc5TTGwohuzmnEH4
3mB/QtVAHT3qPYt1k/pBLVk/6rmhOv4ndLY9PYp6H/OalwHG6tj79dt6ekg/
CEy9bTtkqo7XOYxhYl8/GDE0N6ebq+OEp+58b/l+uHlkWE1/izo6uA2tmB/d
Bzaz0bXoqo7ivinjFX69UK39Qdv9tjqOB3YWxS7ohsVNrjw1/kV4KEy6TSm6
FbJCMl1TPBehUzmf37ONn0Gu/92YZs0iJDu8bUWbHgH7qXCSiqkGFgy12n0y
rCIGvP+yfyZqoLWHQmPZumZieM3uD0n3NRDIcMPjAc3EtMTLxweTKffoGElk
NxMLcgL2dadoYNjij6HSMi2Eyd/JalamBuqU2Ndb9rYQ54L5Hk8WamBlgr+6
7sVWQi5K0lH+uwb6B0j5/87/RTCdj5n8aNDA5V+c3sj0/iKW6n1ZeK9JA63k
X+UZy7cT5vU3q9RaNXAmoXO+XnA74SojY6LVqYHuV0ZXSq3/TTy7r7RwBUnN
N3D0XIFHB1HoG8wa42mgnKxDND2sgyizaKssGtbAwnUn1nvGdRDfOpJCzMc0
UCZC2bavqoOY0FRnbfingaKPOdzt2p2EwNiFSuE5DVxsn6q8BToJ8equh9V8
mmgafMjBdG8noXYkde9WIU1sb5ArGozoJJaYCRtLimiipLh5YU5yJ2Eo7rng
i6gm1jSVBx0u7CTM2qoGb86jxms4/KXXdRKWz7Qrd4pr4gpGsWR+byfxP1BF
V1g=
"]]},
Annotation[#, "Charting`Private`Tag$3177#1"]& ]}, {}},
GeometricTransformationBox[{{{}, {},
TagBox[
{RGBColor[0.6, 0.24, 0.4428931686004542], AbsoluteThickness[1.6],
Opacity[1.], LineBox[CompressedData["
1:eJwVmXk8lN8XxzHLtUYqZhBmRrakfaHlOUghqURlSaUiiVAiS6lkyZotZYv0
TdnKUlFxSWQrW8gSIQpl37ff85s/Zl7v18xznnPP55xzz32GZXnZ8DwPFxeX
Dfn2/8+4G5b0jecC9lxZ+v8LQUm9rP5xWRuia5rr0TTJS6UFd2RlrxM7b/hf
6CJ5Wdjrl/zNt4m23c9sP5Ach4NkaLL+RA/V8Yk/ySpD54KXrEMIhUK6yH6S
25fFL843hREyLvdfTSwikPuPb9vsXCRRYazlF0nypd3OdlMyD4nIpOMR8iRn
N3Qmj2vFEqofRRtTFhDM2uq3jVgnEJY7iw9KkfyYu81/SjuR6E17P+c1j2Bv
9f01k01JhGLTmc7GOQS/o/cXjdskE8seSMyvJjnw3IL52NxT4kPviUPHZhHU
z12IGJZ5TjhmmMU/mkZwrUx6w9CrF4Tei40x/00hkAhvqPyrlUb073pZ+2QS
gaUyUAasM4n406r/HMcR8My5fR33eEl4GPp90xxD0NBpvHpc+xXRHkPMUEcR
uKYJ5I02ZREe4h3T5kMI9MJ66aOPswlZt4uNo38RSLkWGY3Y5BArIx6OXR9E
gLVchofmcol2k6Bhsz8IUGuXwl+ZPGLHakeRy10ImvEH58HfeYT8DS96SCeC
F/9Ffxx4lU8cS7u69/EPBAZOBqf6td4TjzybY6NaEETx5Uf1WRcS/yTXdNfV
Ishx0XO6wsDEuHfWTs+vCGL7tzPHPDAx4vWil1GNwL5G1HpUu4jA7HI1uc8I
RGM/84w0FRPJI1pcAR8QzC17/dxh10fikquNOM5H0HPryeHhxx8J7wvFQb1v
ELy2vhE/ZFNCGFyWTkBZCEw3b1H/N/eJuMnT5/voKYLEigTHAZlyYnTAQ5l2
D8F4dK5yR2A5cbZSKZvLB8E+68ruuply4npz6YaBWwgGKVPG+fUVxPeKbLGg
6wh27DZQ9/etIi6W7eymXkBQkznPozD0lTDd6HqsTIP0l+CzEFKtIS5tUUrL
3oVgp3yEuu+5GiKdt3dtyHYEwePPx9xqawh6yrW3K9Yh2HL/23nL1FpCb9c+
x6PiCG5WqOhtPFVP9Kvy9bz8TYeUV2/kUyPriYxehZz7XXSoi9akrKmqJ7QX
EobOtNFBzvrEe4ZaA/FVKSq/5isdKijeqlwrvhGPuYRZv3PpILa7VfRraSNR
+5rXjOcmHTIy/VsvqbYQsoU2Orw0OvSL9gfqnWkhwsvlZi4u0EDhmt4exYgW
Yu5k36fCCRo83iWQ2D3TQrwwHiwlemkQVh5oZfqplbBqLRx+WEqDa90hI/vN
2wn6SWeDd940SBCovLNcu5MwDAw0aJqkwp7d7uZeFp1EdNjIPd+/VGizX7t1
yKWTcJiTClHuoQKjLqC36kUnUfTRha5bS4X70fq6fiI/Cc+GnhO/X1Dhzpov
y5ZafxJ7R5Z6cs2oYE3UPhx06iYM6dn8edkU4EqazG8N6CaC/qRr055TIJoq
1VaR3E20XBkM1Y6nwOdyK+nnjd3E8OljTkl+FFA0mk86r95D9A1aML+YU+D3
BYW0H9y/iGjPmvpRHgpcDPMsqAntJXgaHukm7eMB+19K3TkZf4jThpNbNqVz
QafFd96i8j8EV5/Gk8h4Ljja7Kda3fOHYFtybfobwgU7Kvuu/5LoJw4VFrW4
OnEB5dVTETHffuK/vAQvynYuiPZg7XE5NUBcaGjo/eG+RBStYD5UE/lLvJSL
imnzWSD4Wd4KHTuGCYkcHlneUzNEsEilcuLpMeLM9JoPpr+GCctWo0JK1STx
uqzwt9y/VsLxk7flZYVZYlCq43X8jc+FrxwEjzJ0FwhHky+hB5/8Lkx0t+3f
cJwLZJWWd/nWTBTeTpg/Mj7IDVe5Ymxx9ULh4Q1vHdeOcYPSrP3f0f6FQumi
K/ctZ7hh7zfj0yt4Fwvzu/pramg8YH5sZf1qzcXC0TXfD6VL80DjoxKe47mL
hZZpuQetDvNAWnm/5YHopUKNPHvd5mweCJY4E9f1jAsv01O2Ec7ngWKKjpFe
Lhdua/nltw/zgJOF7cSzYi7sOm/+OaeKB36aKTbubefCL4kD++//4oEKDnMj
VZQby5YqaOuJU2BYXNgi7Do35qrvhPduFDjd0XzhNfBg7z8FiW63KFCUlJdf
d5AH83HF8aiROrdMT/B3mfJg0XUmJbmRFMjpsb31/SoPXuNbuz/zJQXqfxSU
KKfwYL2dxQZJvRSArcZvDAQpOPzJE3M/Qyrs+M2pt6igYEb+rQ/7TKiwn/Yi
rfwbBcfWnJKmnaZCizrdXv4nBf+3INl5y44KrpZLvrlTFPz2eMRZdz8qnGGd
VFOSo+I2gbsX7Quo8Dl3/+tTblQsf9XK1UiZBoNXso83SNLwOvWOowkbaLAy
8pp5uRwNb+E6sb5/Gw16TP31X62jYc1A3d6bWjQY64ppNiFo2CJZxSjVnAY/
JtbxClnScFTD6HqeEBokl0eunkqm4bhHtgIHI2mQWz19lJFOw8mne3ofxNBg
ljjOUsml4azBb3HrUmhw79lyu7WfaPgLNU/ApIgGmUuxe/x6aJi29WZf5hgN
vKJuRL2WpWPBuani2RkavBPfNLWoQMeiRQ7x2lx06N3bnKS2no5lD1oatwrS
4cpJVvnd3XS867z2R7o8HQre3Gl0NaHjq5ECCSdP0CFT7er20mA67pl4cEzg
Ax14duLBn//oOElj85X2j3SYVO0V6Bqn41NBX0IyK+jQvFvIvXaWjlvkaOVH
m8k+Vqu44wYd4dqjTjtjx+hQ7fLpzbLVCBe80pddp4xAO2nFPt79CHss9O1a
2oDg5eMtbnMHEFbTvWNSS/ZdH0t6YfthhHM688KctRG0ykdeumyK8AthBVrB
aQSPBrimSi8h/MCOu9/gAYL+3S/+aQUjbJQXS2fFk/tkcFO8fBjCorQdnLFk
kseyVaYjEQ6OtTd/QO4zqYKXGq3jEPaubP3SQe5jzYc2iV9PRVhT3GXgVQOC
+InvNnUZCC9ZivJ6tyIY3m9yVyILYbdZHQ1Fcp/VentayOUtwg5Kr7MdqLyw
630b60wJwqrOR2o0BXhBV2WL+4YyhAfw4OBKUV7g+ZAW8K8cYasTHPk8GV5Y
vLqyYttXhOWSCzQD5Hnha7LKOK5FuGvI5NTJdbywhe9ttVoDwid9Q6O5d/LC
oX6q31QzwhL1a3PrNXhhuazR+V2tCDdLl9U+1SHtL20cuNxOrv/1Ar/eMV4Q
ryL6k34irPfromeYIy/EPBwO2PEH4X2enLS9rrxwwzMtqr+fXO+qtpbJG7xg
6tPSETCIsLr2wR1mgbxgZIOUYocQ3tZOsxYK54WdNZ3yAiMIb3IuiCx8SPrn
8tPCZhRh5afrxzjPeCG5Nfj62DjC8rt/sxrTeWFc/qqpzCTC7G+PD/vl8MK+
ryOO6lMIS9uZ3FR/R67fS6Nw7zS5HppoxmARL6SlpmjsmUFYLK6iLf4zLzy4
7TotP0vqt/WOwJGv5P0WhLoXSV5WvVOd0sgLUU21XKVzCAucH7+Q28YL7WE7
jnjMI8y7kPbAupsXIpyL61kLCFMjz5cy+3lBIHDO9zXJXOukJyqHeSE1xd1O
fRHh+ZJGzo0pXlA/13snneRp8xDDDYu8wJIeqBBeQnh8fP+tLiofPJ7fq3mG
5OFArpcRAnzA8zf/TyLJg3J5P/aJ8gF+IlNUS/Lv945CMww+SI098nmY5B4j
5V2pMnwwJrFzaZHkzsGuiyfl+UBHqe78PMlt3jEPhdfxQcNDxvxvkpuljD4X
beaDPXSp4hKSG3IEp66o88HTrxNvQkiu0f+0Rl6DD3ykK9t1Sa7q8TRq3s8H
KV1Vm8dI/z97bLtzz4APpuu25weQXLJy6NUuYz4wszNyXEEyTnvW+c+MD7wn
r5ncI+Pxfu9p4URLPsi8vuQ0TMbvbRtjz1EbPjj32aRAm+Scq7WXaA58oOi2
sPMeGe+0ZM0KG08+GAH1mk5Sr5Rdc9OS3nzw89RC3yipZ3JDtsKXe3zQPX5y
yzipdyx1zd1N0XzgRK22K5lAODq2Pbsnng8WU86ah5P5ErElqivqKR+EiqXc
PjKGcNA5cmbM4oN7M5XXY4YRvjdfaJ+eR9p7dl9fgcxHnwjXuFOYD8pCak2T
/iJ8o+TP7MdqPrieL6RqReazm3mS0rUGPmhebzCR8Rvha+OmJxRb+eCQ5v35
3l6E7eWqcgN/8wG1QLFGrhvhi++9e/YM8YGIukyCMlkvVka7V4xM8MHwNfNs
mQ6ELbwzHIwp/HDjgMOrphaEDXpC10pL88OGgWHVm2S9Vq3taTCX44d/4UNT
ymQ9H7iy/UaMMj/ItUzs+VyFsA7PjxrGdn4QiB3VbyL7gabs2msrDpMsHxS+
/wOph/UNGcNj/BDGY+tyMx9hIrP2c6g5P+gU//6V8gbhXXtcJZfZ8MPSozc2
Na8Q3mr+CfPe5oeWs2qE01NSnyeMi/v9+MHxxOUX25LI+hywXeETzA+j2ssz
B+PJfuQmakWJ4YeJxaeB66IRVow+JbCYzQ/+F07U89xDWKphxnjsFz9YKRV7
LlxE+JHkwaWNg/zQzzS702aFMPPs4xSHUX5Q1L63L92SrM/RfXN/F/mh6G+v
sBzZj0VEIh7/FheAo42y01Y6CFP0VQfadQUgNmqH7142wrfDb0VIHRaA4Euy
qUD2f67Wht1mxwRgS5xrniqDrD8b99BmSwHQ5fxI7BRCeNL389Z6dwHwWSUx
GzNNx/0fLb0+pwtA/QLx/EolHcvcb74YnCMApgZtZcKf6NjIwsDY6J0AxOXu
iIgpoOOCaTXlzs8CwPWkQOf2KzoOW7e8YapbADSfWD0NjKLjnQ8KFRQkBCHw
XdC1hyfpOPCi1Ne7PoLwquoC620HDRdtD8s7ECQIwbUrvh5touFJKm/y8ghB
CJPta+j4QsOnE8Zc4xIF4dZxA+7yD+T+31DBzn0vCLylvv6dj2i4fff1az2j
grDF06lDyZCGVZc3rtY6JQSPGCvZRrlU3BvUezvyvBC482nce5NKxXH8U319
tkKQ1vGPb1kSFQtSGVmBrkKQWDhlHRFMxf2TJvsa7wvBpv+e6yJrKn7a1m5v
UyIE1zIlVgWsomKplF+FIUrLYGHvq8ntNhTMT0ycaRtbBj+kyh2fD3JjVw1F
3tezy+DR4dPW0z+4ca+WWUYItzDQh8M11Wu5cbFO0aymsDCcYSrWReVyYzfD
oPDnysLAY+/llOPJjQfOr/l07YwwuOW05N8T4MZVgcaKy78Kg3nHzgt/V3Ph
/X9Np9jGInChLjdhmJgvbC4+x22qshyKJ9wdN/uNFeb6lVjITiyH653tLoY7
fxVa0Zw7v3wRBde+PjEz6uPCs07uuYKPVoB5SNlZo9GfxHrrtV/0z6yER+oS
8R0DI8RXURUBZ7VV8E0oUMm7ZZbYY2f3J2bXKkiri1L7NjNLZJRllBUTq0Bv
btJ/FXOOCPbY6C2ybxU4MdfEnz0+R+j3bltINVwFWcF3XDbXzxEVeRpDXbar
oJ8atPZ+2Tzx6fTx+sPx5PeJaRgnLRLvMm7HqFDEYG+cfZm7MDfQ9Y0lHtDF
4Jsqc6JjNTcc+aPwkJtfDIg1XM+2q3BDH6c6qlFEDKIlc+2KdLhhxUPxMC9p
MXA6zjy3+xY32N5J82tQE4Mt9NWL1UPcIHmi0dnDQQya+5ezBD/ygNVEynjv
FTGQXblif/VXHngV5n7liIsYvPduzvFq44H91bKO8jfEQIySrlkwwQNXNG0v
1QSIQe+6h/LhChSoVOE6K/dMDOQFU5ViyTnanVv5cFW7GHjXV/P/I6jk3CfQ
LP9TDG4oaTZl61HhsN/gqVs9YsBXsOW0rTEV5IQzL28bEIPryR7+mRepUCW1
JeTxtBjUqHNsAiKoIL1jz5erK8SB5WYze+8XFYrtDfVX64rDJUfFS64eNFDJ
2tzgoi8OUcMWE9Z3aRA1sdK87pA4EA1tJ3WCaWDr0WTre0wcFpaXZLcmkHPz
PfOAkbPiIF+lXHagmAZWT60qPt0Qhy9HWwz0qXTgb3PTsc8Rhx8VveueedBh
m8tzoZA34nAupFN7/R06nBFtrsvMF4ebUbcfPvenw1udrSdHMGnfeqj7ahQd
rHKHHK9Wi8N294jo85l0KAo+F+PWKw4ZFeLb0n7QYVAp/HTMH3FQG31LHOuh
A+NT0Zr3g+LwVuyh7ugfOtjPSb9cGBWHp5utDnNN0EHqwvcSryVx4JPQqrrC
j8BVw+CfD4MB6c7vn+duQpDc5pH9TJIB2484q94g59avLqmun6UZ8Joa7rVj
FwL5DF4K/xoGVIg437pNzrH1Eh/FgzYyYOE25ZntcQSLuSNt6VsYUKrYuL/Y
DIHyEdmkL9sZ4KzSmcBPzrlevp4qInsYULNXydbhAgLV8e0a4XoM6DO1VAh1
RWAaYkXPOciAcee76lc9ENxVjqxsOMwAbo+fw7peCNpOjxqLHWeAevbA7gpf
BPeq0y4+PMuALJVypnQUgl//sSISPBgQ6BsxI/ISwaD3zxmKFwO63Ac3GGQj
GLVMPHXhDumvS4W522sEXDKstRvvMeDlBap/wnsEEg9ki4sfMCD1Ztik1GcE
LOdOBYUYBohq9EXUViBQPPo4KCCeAT9o38WcyTl7q7CsidFTBqil8hb41SE4
7Csz/CuLvH+kp3UXOWcfP99hrPeaAS0+usNCPxBYaCW8y8hjgO9Cm4FiJwLb
JWlfF0zaZ5j6KvUgcGr/Mdj6kQHNFy0tRHpJfd7FG0IZeX3SZVpvH3mOcJGW
5vvCAM/lFgUnBxAEGf+4Y1dL6vEdVy8NIojYHP+ntoEBV9PWpoT+Q5A4tDr3
USsDytKT826MIEipbpdY+sGA+3YP/rWOIshIjfM628UAbzOzfoVxBO+tV+ur
/GEAj2zKpsBJBB+121+FDjLAKsHVM3kKkefiOPGJITKeCc8DUqcR1HCf9DQZ
Y8C5UU/zxBkETR1S3R8mGdBWvXfo7iyCHx/adNizDMj5aqJlMoegJyY2w2eB
AQbzcick5xEMXDdfOcDFBNtCiXVVJI8el3I7RGVCxOC7ItsFBDNb2zqyEROc
CiNXzZLMtTJWmyHABHabhqLLIgL6qFmqxzIm3DxkNdNFslCN5PKfy5lgGZLr
t3sJwcqM1mvaq5jQ6vbvmw/JEoExbc8ZTDhp2tZZQDLropnmMikm9HUce/6L
ZEUdyRQnGSbIKGiunyN5vXyrUBObCRdyg53+/zx4GzXmyk55Jum32pVRknd1
mX5PUGLCo+oDGxtI1sISBHUdE5SvtKYlk6wX35J8YQMTqA/4e8+SfNjjEX/1
ZiYofEXty0k+bmrqsHE7E4Qll4VlkP5b7JBojFRngk/3ORo5z8N5sZads7uZ
YDd7ansOuf5L4w8TLTSY4PfolOJqkp3qTNDHvUzYZF3TfJWM3/WXTDsFHSaI
Xlqr+46Mt1fw97qAA0wokZq8Pkzq4XPp4Y5hAyZcMyq2XUlyhCKTmmfMBJ7y
nghFUk9zC/ln3SfIeIkdvbiW1FsuYrPeMnMmTPr/VifPP5CzdDD0rCUT4kI2
1XwfQ+Cx1Wxz8HkmHPc6GvWYzKe9thca315gQvWRq6YnyHxraLwttewyE/Iq
JzoekfkYKxhauMOJCSoiy56s+YvgnGac5VlnJuy8FGmdSObzePqblLfuTAim
fp62/Y1gxd3BLWf9mLCqLeXEwZ8IWvJnmoICmLB+e4/W6Q4EScN097fBTNgz
u17tXDuCTeasIqFIJlglzu0jviMw3Hzs4NtEJvR7e6/UrCH1tzk73JXMBEF/
tnM7Wb9d8Q7hQilMMNet6LepJOPJH/DdMoMJt+3PSx4rRRD2s/C80DsmVDlL
FLq/I/uTeDXvjgIy/kKrJhLeImAfbEm1LGKCA7fNwdxcBFlvx0felDHhwbzz
pexMBHUhSjcsG5hQbBv7cCGJPOd/2sYKamLCk5po8dQEBJZzWiVvWpgQZh1W
phtL5r+VBb/QTybEhy19Mo1EsHxPeNSbv6Sez03cKn3Ic/2Vx2pdw+T3dlGf
eO4gePw8vU1wnAnv5j8Zrb2JYMOqz2zLWdL++DOdwy5kvg3OZwgiCXgssqbq
jxWC0EdWZWdkJWB2/knQSS0ELtduX/HgSIDgdxdO8R4y/wzjZR7IS8Dtm855
DHUEKvyNLlUqEkDz2TgSswFB+XVtxe1qEgDHzTpnpRDwmMj5CxpKgNvZ6xar
x+jwZwtsVTCWAO6ZTaZP/tKhRsT8p8YJCTggPeIj+ZsOCZ/D1VwsJOCEdKNX
Vxsddu2g9P+8KAETI6HGlZ/o4CzepffmjgSEGJ+OFoikg/nYwmStjwRUHdq0
73UwHfZ+ZT4Z9JcAypotFkf96CDqe2SOFSoBWWhT2zl3OmRM4tTAWAmIuFDh
+es0HX5/SxC0zJWAxLR3HaeV6GAacfKLYJ8EnO3t57V4SQOpbH5J234J8PHS
Us58RoOO2jfW5X8lYNmTW8PD8TQ4JyzK7TMuAUrcPt77gmhgf6908xK3JGS7
jbmp29Dgttf6hyNSklCcOrrvgDQNnl/iPtdo+H+m5RGeVLgUkPFyyzFJELXV
18tyooLqC7OFMBNJ+K4WYSZ2gQpZfblRh05LQk2fjlS2IRXeW14s/2wnCVaK
jgOEAhVqTtSrvvOTBOsVVwLSqykwvffpTEIBad+wbdtyEQp4vEu4U1IkCZYn
1wZFUSnAtemR0J8SSfByWC0vMsMDSCaEtalSEgiK9a7OnzwgNuOqW9IkCWm0
ex/Hs3hgc7r+w9/DkvDDxzxmwpAH7FeN79jIkQKBpuD2e/e4ofuXpmuxrxT8
HpBpc8teIjQTviQpB0hByrhF+vuIJeLxCdPqsGAp2PEgNbLPeYmwqHRkn42U
gtC+CerM9iWi5eXjKsoTKRBaeNIg+G6RqHNflNUukAKxH7dkBT8sEMXL88vL
xqVgeeSqvwKv5oik3Rslq8+shquTLk3GFlNE+l3n5dbrpOF5+ERxCfwlfI3P
HqBMSJNzRKnCv5lvxNa2xOe+1TIgrGBdJR1QVxitFJNefUAW+D99uH++fqDw
Jg6KPpAnC24fJyYun5gq7G/HETP5siCXvO3+Y/epwmNzY6HP3svCX2//WBw/
VaiyzdSfgmVBgmHy+EvPVGFzqrzbu1JZWMnb+VzGYbpw04NCs7UNstCyJHTM
685MYa/diLTAkCwknYlUCY+dKzwoafy0Qo4FDm631nSHLRVG96hiM3kW6B8z
X6eSuVTYk87bOqjAAvoh5Y9nKpcKPeC9iPBaFujE5iqVc3PhtPMcj6MbWXDt
P5OwO2pcmP/liGHbbhYYKvYeYTzjwmV7g7n+HWNB5ZaDW33duLHosguSN0+w
wCn3je45X25s0aSxTcSUBd7TjNhtEdx40mbCdtNJFkRH6bfmp3Nj+RDzpmtn
WeCIP/2GTm7s/V05Y+kyC+YXrb12afFgDfsys+X+LBAcsBD4wEXBs81/9pXc
Y4F2aN6okhAF52gJbnIJZMF1h24JfyYFyzOP8LaHsOBB1Ayf9CYKFixpyUmJ
YkFhboZtoiUFNzP/CUEyC1wmVJPoRRTs8Gklti9kQek2PwmRK1SsvGF7KquI
Ba63JCNyPKm4+5FJVEMxCw58Cd2r50fFxxziL6mXsoClkbBWN46Kd0kqMunV
LHisuJKIKKViXsedTnEtZDytuWkmYjScIGUpVzXBgjmvyCjbFzSsvnmtquUU
C7JN0tsismi4QXd8+/Q0Cy5Xn/d8mU/DvC4+B+TmWWDmY5ZfUEHDDrUvnDx4
2GAIryK39dMw+IxhFWE2/CyU8g+Rp+OW2PcVxSJsaKpVU2xbR8dXs+82nBBl
Q5bB5QaJrXSc0in+23sVG9zCRzXsteh4+c5dwu2SbFAXGx67dIqOu4a8TwYp
skHQ2v7Xpwg69qAbWHOU2XAgNXrfxhg6Flst7pi3lg0ttxkOwYl0rKf33PuX
KhtCHWQEpTPoOCu5OnX3VjZ8zbObvV9Kx3dMxGb/arDhXHCKRfk4HUs7dFC8
tdhwepO/66FZOn7rkyIkoc0GCYW/0mVLdDyYrc7ap8MGFSFfSgA/wkbLTunE
G7Bhx+x09TkZhOU+PosyMGOT523PyJP7EP6iMp3cZs6GZzn/fe/WQ9g1Sif7
ogXp39RTPvNDCFfa/Pnqc4aMV8YpNvsEwk4ia/kKrdmw1nzLX6oNwlJu7uIH
bdjA0t27T8IO4U/dlWtaL7KhncvjGssRYcabS5pTdmyw35NhSLuOcOHJDPf1
V9lQ2ir0lu2H8IWyRf8Pzmy4riTiVxqAsOjGQ9EHXNjQy3gpZR6CsBV1OMfa
jQ1T3AoB5lEIC6Zu/JfgxQafA1aaWU8QNp3OOS0SxAbVYDnLzHcIUy1pl+OD
2XCLv+eefQHCGZXGniqhbPD7kWQiU4Qwd8LkQ51wNlz9+bTLuBThFO0d9V4P
2YBqTF3EahA2zPT7uSyGDTYNjsmWdQjPMb4PxcayoT/T1fZxA8IGg9cF8xLI
/Dg7VjTcjPBE2Dvtkads+PW+7lJPJ8Lx8wJGN5+x4UvoGe0PXQjrWJlbCj1n
Q1fWQrpvD8Kxags3lNLYoHhQdO1IH8L7nhwMepPOhkNf3HaH/kF4SDA+RjuT
DWUva1plBxDW7Nzz9kwWmT/Y+63YP4QHdUNKh7LZkP+dMeE+hHBUdkeDZy4b
TqjS8+uGEf7j4zXy8C0bZoPffjcaQzhsuGZJIZ8N0h4zm7zGEd5lylr2+h0b
4q0DlsdNIBy6rli5roANePesWeoUGY8dZny3MRsSOAlxL6dJvbTG+zYWk/5X
SdUmzyDcaBBU+vMjGyrdPk34ziL8z0T+6f1PbAi+P8VvOocw7XzhHY0yNryP
Xi1Czv9YyuGE5chnNrzamUGtJHmL+wgkVrBhUlflt80Cwgd87skcqWJD3Bv5
/CmSLe9zFrm+sOFe3A63q4sIu8W+b3v5lfRPjU+xk+T7z4zfna5lw5OhAx/V
l0h/s/49FKlnwxodfMCbZPzB1xU3sGFxZGPRe5KbPssed2hkQ0WRK6eH5H/1
eVtlm9mgnOXqNEsyvcNwZc13NjR2szLI+R+v7h8YvdnKhudxDo1jJG+Z8K5d
386GJH27gUaS9bmkX3b8YEPnHZW/KSSfFXgTHNLJhvD5L602JLuJHbYjutjQ
HXnrDZPkMNafA0PdbGgw8vR6S/r/XOW2csIvNjDOoe37/v98e7sk36E+8vcr
HFuLyfU3a+b0Lf5mQ9p3cXtVkocOHizN6GfDyKHzQ35k/OgmvckWg2R9bP16
qo6Mt/S5m3eW/SPr73JTIT/JWy8zLAuG2LCPIiiyidRH3+0V2I+wIWo1OqJD
6uce2r1QPc4Gc43JZxqk3mExHm2ek2S9HDIrlJtE+MV/q96tm2aD0uCFikky
X5rf73cNmmPDuN6vAutRhIfLOo/tXmBDnYT8C/oIwqj++ta/i2ywDM8OjPj/
/y9/Ukf1eTggMtS+03MQ4YPje2vnKRwgGtL5m/sRPrfUnplG40DmuQ3fWGS+
h68SsRPk48BcwQ7L279I+xpX+yqFOXDD/eItl3aEeQ8Klbov54DlqhBDvVaE
ZU78l7x2BQf+7XdRFvxO1qN985kAMQ6YB3JNmJP1mfpoV5veag6s/xcrt7kC
4eKn3/JnpTngKrbB7EYZwi0v7R++kOXA/bjY/96WkPbLHh/jl+PA46iRO7Nk
v7Aao9aWK3PA7tC7sOwshC1e7P1irsKBl29/BWVmInzsjHfl0DoOiKqFtsWm
kfX7lVK6aiMHhHgFPQ78h7B8Ks+7M9s50KGoNDcdjfAvS66nM1ocSCjib4hy
R7iNCUmB2hyg6txaSnFBuKHmZoLMfg7AjnWJaVcQLtmz9FBbjwNeTcuO+Nki
nCyxGHz/MAce6R19cd+UjF/dnKvSSfJ67TUx/7YibO6/89p7CzLe13rPMzeS
/R7crxw6zYEPj8LrtqogvDdj1s75LAcGVjbHabHJ/n9vxrLIhgPvP6Kj2UII
d2tM6ZtcI9fvQhPq/UnHlq9GZf1DOMCru37bq5t0fOn20Xm9+xwosQ3Zf8SV
jp2P5jQJhnNgWeAurk4HOvabcA4OjeJAhI/PjfIzdJyhNjP3II4DXIk8R6s1
6XimaKnxv1QOCPv7pcRx03FonWBQSRkHhgUNWMFONPzoid0Fn3IO7HGK2SNs
Q8NPrn7R0qkk82MpruHmKRp+LRY6W/mFAy2fjPzW69Nwm+mKC/XfOGBkf7jz
//9nK3Qztbq6OfB6bBv/SB0Vb8hxk07+xQFdTdW9dp+pWP1u68z5Pg4cIdqc
vn+gYn2FuJd/+kn7m0W/3kqhYidbWemREQ48tQy7uIKcTzx23ZrJGiP9SYzY
KOJExXeFuhquTnBA9eLM+gUrKo7OfBIwPc0BFTGliWeHqTjJi2qdP8uB/siN
1ee1qTj1yHlNj3kyPlXiSyvUqTiHXbp6zyIHeD5Hh2epUnHBmPzM0hIHGM88
wzU4VPw/VtiVxA==
"]]},
Annotation[#, "Charting`Private`Tag$3285#1"]& ]}, {}}, {{{1., 0.}, {0.,
0.3333331911495523}}, {0., 2.1243660164316225`*^-9}}]},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->False,
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->True,
FrameLabel->{{None, None}, {None, None}},
FrameStyle->{{
RGBColor[0.24720000000000014`, 0.24, 0.6],
RGBColor[0.6, 0.24, 0.4428931686004542]}, {Automatic, Automatic}},
FrameTicks->{{{{-1.,
FormBox[
RowBox[{"-", "1.`"}], TraditionalForm]}, {-0.5,
FormBox[