-
Notifications
You must be signed in to change notification settings - Fork 0
/
美化plot.nb
executable file
·3823 lines (3799 loc) · 173 KB
/
美化plot.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 12.1' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 173595, 3815]
NotebookOptionsPosition[ 171998, 3779]
NotebookOutlinePosition[ 172410, 3796]
CellTagsIndexPosition[ 172367, 3793]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"{",
RowBox[{"#", ",",
RowBox[{"Style", "[",
RowBox[{"5", ",",
RowBox[{"FontFamily", "\[Rule]", "#"}], ",", "Italic"}], "]"}]}],
"}"}], "&"}], "/@",
RowBox[{"Take", "[", "$FontFamilies", "]"}]}]], "Input",
CellLabel->"In[99]:=",ExpressionUUID->"f6932c38-91fa-46d3-b35e-eb458e95bd90"],
Cell[CellGroupData[{
Cell[BoxData["Cambria"], "Input",ExpressionUUID->"1d5de40b-1ec0-4ace-9226-40851f368307"],
Cell[BoxData[
RowBox[{"{", "0", "}"}]], "Output",
CellLabel->"Out[35]=",ExpressionUUID->"a9d29786-c3c0-45e2-b833-cc4b600be4f3"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"myplot", "[", "Plot", "]"}], "[",
RowBox[{"lable", "\[Rule]",
RowBox[{"{",
RowBox[{"1", ",", "2", ",", "3", ",", "4"}], "}"}]}], "]"}], "[",
RowBox[{
RowBox[{"Cos", "[", "x", "]"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",", "1"}], "}"}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"5",
FractionBox["h", "y"], " ", "E"}], ",", "2"}], "}"}]}]}],
"]"}]], "Input",
CellLabel->
"In[177]:=",ExpressionUUID->"6939f2ac-8d96-4989-bcb0-ddf7d798558b"],
Cell[BoxData[
TagBox[
GraphicsBox[{{{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6],
Opacity[1.], LineBox[CompressedData["
1:eJwV1nk0ldsbB3DS4Cqz283cgJCkFNVV30qRqYwVIkOZGky3RFfFNVSmQqcB
UYabqcNxkKkB5WdKhi7C4RxD5jdFxvTb9lrv2uuz3r/2ftb3efYGB3fTc8u4
uLgSyLe0658bbHwzZLF/8dfSorBcW8KjW3wn7m9+PbBk9cSH8Xnih/H9xOLj
JfdJyQX4KBxDVGSZ1JIN6lsZCeLm2NGwcH6RWC5cOvWXrCW+iZfe+km8oO/4
wF7BFhoe814LxMNBLZX2NHswm4uV54lPnp0uixY/Cy+dOfoscaW2RGFFvBPe
1xQtmyFW27QvZ1LWFRaOsxt/EMcvs0uXTz4PMdEioUliXk7gsxMKl6DXNVM7
QVzc01RfYe6B0HcvzSliD+Oz+qdpnshrmMkYJe7aFqodIf4XJq1myQEpxCau
eyNvfRln+ouu9xLrC2ZovYq/AqeUOb4e4oLxul2UrC/s/1sIayO+YGvLCLX3
g5LFq5stxBs/UKrrk69BYz2X9kfiyGwRRROF69hesFytiviIdErKkPMNeEVV
WZUTX3//WOit+U3ENfKZlRHv1FCJsKQFoCBHJItBnPT78ZA74kGYrFXkiiO+
Vv+g8kRxELZ0UrRY4hPBPcs2WQcjKEFzPoJ4zZTnjZL4ECTa6KncJL7aEnt1
VPY2JFf7qDkQm4V3Fbx8cxt17YfVrYhVDytMBdnfQXl+DI/pUj3zCj2lk8Nw
s5q55iCxScxnt2MKkYjpWvFWiljFYFO6RFUknt7r2ia6dN88F74MOEdhVYXG
hd+IzxQt5r42v4u6jotGU4sUfle6q3qKdg/Hn3/NrSEO4M3bfFs8Flq1J3ku
ECvr3rvF8IhFmeRqDVvipmD3oY6qWKxXcN5qTCzHo5KpeuU+xBvF3dSJ3/9M
UW1poqHU+4Lk9E9y3u+0XbLhj6A+2W3jTZy//TLtaO8jyK5S6bAntvUwm/bc
+xgL/26UNiamjwkWVQ4+RvwfQtQWYtPBW1puR+Lx1YGq6Vmg8LDLTzt/8QmE
C1kOID4oZZnCskhE1co+ZWXiYSvNFbzZiQhXoBWKEcuM+jpmb01C82Vu2aF5
Cu6uGvJcnUlw/d+MfBSxyFn689Tdz2BzPErs4xyFU5ZP6V8nUhDNHXdZfpYC
1WHO90wiFZOm8iV8xCG2vOfMtFOxIXO+jpqhkOfoLlEQmwonmQiLImKBS/uC
r2mmIXRQd06P+F1gu9VK/3/B23U42n6awo4s4ZVSvBlIn8v86TpFoVr1nV29
WgYC2oXrjxLb5V4tuW6ZgeymapfNxBEF3R7sjAyYjqqt6JukMPgmuyPNKBMG
RexGK+Inn/Ryt8dkYXPOYvH+7xRW/wo4rStDx8X+V/XdX8l9uZ60VdGhQ3fa
nXpJLNeiYid8iY50lb+77xHvT2917CijQ20qTVmbuCidll+omoODTMOLyRSF
MbPRUoMPOTBNFEyxGqdg8fxBrTc/A8bPdrcnj5B82wQaOm1ggEqofn+FmCNy
sf7ULgYch8oC9Yjd/Q817LNhIOR247nxYQq3TceaVmUzkJiX1baLuGzh0Oc4
wzyENnt6lgxSkDcZH6wIY6Ju5wHPp/0UJG7o7nV+ykRr3cpGV2Kh7KQwvkIm
0mN8fmwnnuM1UzXhMJGmYxn9to/CxzeF3qzd+Qi+pSjA6qXgpxawONOfDxa/
6do1HAofBMXEVA8U4lZkxXktFgWfD3vwcLIIb0uED49/IvVTze+v5i2G/LHO
8izilAi18HmpYvC0fRU4T9xouLnd9gj5f3lW4EsLhS21Yt7ytGI4WMe+6Gym
0F1FpTE0SzAheuzCq0YKum9TBer9SmGeVttnXU/hD6Ywi5v7NdYxajmLFaRf
cbTrGrTKEdcuKvIzi0K5W4Kk5WglXFiZhnXRFKYU9glmX6zCZt/TE4o+FJbN
ZgpJytfAN953C9OCgsYvuwKzF3UYUd2WukudQl3Qzg/vlRvgH0IvthSgIHt3
ZDZ9/CPcXtnaTnPGMTLdzfqk1oRsZJ4xKRxHynBJjUBkM8TeGatHB41DQPpf
qq+vBdsk7zEMj48j3DXfKUnuP3xjXj4RKTGOHwcy+1xutKJ8UMaDlzWGv3ZU
MtdWtAFrg/y8n42h+0VlWOOGz+g8tGgRbjuGebeWOCW/DqSXr30Uum4MWw6u
WnQq6URfTCPX/pZR6D7b4Jz7BwtXPz0c+xUyCh/pMxvZp7txjWlVNfDnKFRG
LVa3GvWAS8so4h9qBKKCX3kr53qgddvY5f6jESx/HUffFM+GjxPP0widEZzf
WdL+mwEHB77sOh4wNIxMPYekVz84UP9n21vxsGFMjUgIDdB6IdorI2OtNox8
M12e2MN9cPdZ8OOvHcKNo8GJzIE+CH2+NPDBdQgbuvTbkoP7kWvkasXNO4S9
mkGx4jsGsJK/v1chbhCnZRpmuZsHkLBSxlxEfRBTNREcj4AviLcX0Ql7/QUP
l9v+ZSo3iNhPwSFbTb5AlJX/bFnlIJIUFaXpnAGs8A8w3+M5hJpKVo+xywC4
0m3pHJFhVJ0oNaz93g+vx/QIkfJh0I779fB796Nsyy1e4UsjuO/MyND81gdh
fS+VQIFRhDw/9m3Apw+dWz82+5aOQlOy5wb3RC9ynkCuj9RBMXr7xIJHL2zo
GsLSi2Po0Xbxok1wcDP4aUBnxjhyu3XdDM5xkD0oHSdgSOEf6zUG13vYuJUQ
bMc6RqGmrWm/EouNs6Zj8i9MKIgF6Am2dLAhVVqaY3SS5KrCUkeplY07Udbv
wx0oNO8O5W+qZ8NF49EEny+ZIz9ll0uXsLExSOzoqjQKgnzPGQ/vs7G4+2/+
1uck143ORxDDRvtYb1NaJpljH8/n999l4+7JPBudXAoOfGZbd4Sz8UvZ1Du4
lEJ66Hr/6kA2OhujnvCQ3O0xqk6acGfjZci0YzPJqb/X3G+0i2zE/nlGKbmN
Qtq+YuO959kwSFVlHiK5v+Q2cyXQiY3iq/XVAUPkXfBiQkHYhg3a1l1RJqMU
uO5J+DOt2PDkxJtvIH1wj9t0zslTbCgaXuh+Q/ruQlZ3boIZG8u5W1Lukr7e
eHHy+gETNnry/3SzI3OE1tyg1HuMjVK35G1qZI7F3bnCCDZk44Hs6qmld5gX
xtYp6rPxfyH2Lo0=
"]]},
Annotation[#, "Charting`Private`Tag$28075#1"]& ]}, {}}, {{}, {
{RGBColor[0.368417, 0.506779, 0.709798], PointSize[
0.012833333333333334`], AbsoluteThickness[1.6],
GeometricTransformationBox[InsetBox[
FormBox[
StyleBox[
GraphicsBox[{
{GrayLevel[1], DiskBox[{0, 0}, Offset[{3., 3.}, {0., 0.}]]},
{AbsoluteThickness[1.5], Dashing[{}],
CircleBox[{0, 0}, Offset[{3., 3.}, {0., 0.}]]}}],
StripOnInput->False,
GraphicsBoxOptions->{DefaultBaseStyle->Directive[
PointSize[0.012833333333333334`],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}],
TraditionalForm], {0., 0.}, Automatic, Scaled[9.75]], {{{0.,
1.}}, {{0.2, 0.9800665778412416}}, {{0.4, 0.9210609940028851}}, {{
0.6, 0.8253356149096783}}, {{0.8, 0.6967067093471654}}, {{1.,
0.5403023058681398}}}]}, {
{RGBColor[0.368417, 0.506779, 0.709798], PointSize[
0.012833333333333334`], AbsoluteThickness[1.6]}, {}}, {
{RGBColor[0.368417, 0.506779, 0.709798], PointSize[
0.012833333333333334`], AbsoluteThickness[1.6]}, {}}}, {{}, {}}}},
InsetBox[
TemplateBox[{"1", "2", "3", "4"},
"SwatchLegend",
DisplayFunction->(FormBox[
GraphicsBox[{
InsetBox[
FormBox[
FrameBox[
StyleBox[
StyleBox[
PaneBox[
TagBox[
GridBox[{{
TagBox[
GridBox[{{
GraphicsBox[{
LineBox[{
Offset[{20, 0}],
Offset[{-20, 0}]}], {
GrayLevel[1],
DiskBox[{0, 0},
Offset[{3, 3}]]},
AbsoluteThickness[1.5],
Dashing[{}],
CircleBox[{0, 0},
Offset[{3, 3}]]}, {
DisplayFunction -> Identity,
DefaultBaseStyle -> {"Graphics",
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}, ImageSize -> {9.75, 9.75},
ImagePadding -> All, PlotRangePadding -> None,
AspectRatio -> Full}, {
AspectRatio -> Full, ImageSize -> {9.75, 9.75},
PlotRangePadding -> None, ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.09205128205128206] ->
Baseline)}], #}},
GridBoxAlignment -> {
"Columns" -> {Center, Left}, "Rows" -> {{Baseline}}},
AutoDelete -> False,
GridBoxDividers -> {
"Columns" -> {{False}}, "Rows" -> {{False}}},
GridBoxItemSize -> {
"Columns" -> {{All}}, "Rows" -> {{All}}},
GridBoxSpacings -> {
"Columns" -> {{0.3}}, "Rows" -> {{0.5}}}], "Grid"]}},
GridBoxAlignment -> {
"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete ->
False, GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}],
"Grid"], Alignment -> Left, AppearanceElements -> None,
ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction ->
"ResizeToFit"], LineIndent -> 0, StripOnInput -> False],
FontFamily -> "Cambria", {FontFamily -> "Arial"}, Background ->
Automatic, StripOnInput -> False], Background -> GrayLevel[1],
FrameMargins -> 0, StripOnInput -> False], TraditionalForm], {
0.5, 0.5}, Center]}], TraditionalForm]& ),
Editable->True,
InterpretationFunction:>(RowBox[{"SwatchLegend", "[",
RowBox[{
RowBox[{"{",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Opacity", "[", "1.`", "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.368417, 0.506779, 0.709798],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.24561133333333335`, 0.3378526666666667,
0.4731986666666667], FrameTicks -> None, PlotRangePadding ->
None, ImageSize ->
Dynamic[{
Automatic,
1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.368417`", ",", "0.506779`", ",", "0.709798`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.368417, 0.506779, 0.709798];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.368417, 0.506779, 0.709798], Editable -> False,
Selectable -> False], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
"}"}], ",",
RowBox[{"{",
RowBox[{#, ",", #2, ",", #3, ",", #4}], "}"}], ",",
RowBox[{"LegendMarkers", "\[Rule]",
RowBox[{"{",
RowBox[{"{",
RowBox[{
GraphicsBox[{
LineBox[{
Offset[{20, 0}],
Offset[{-20, 0}]}], {
GrayLevel[1],
DiskBox[{0, 0},
Offset[{3, 3}]]},
AbsoluteThickness[1.5],
Dashing[{}],
CircleBox[{0, 0},
Offset[{3, 3}]]}], ",", "9.75`"}], "}"}], "}"}]}], ",",
RowBox[{"LabelStyle", "\[Rule]",
RowBox[{"{", "}"}]}], ",",
RowBox[{"LegendFunction", "\[Rule]", "shadowbox"}], ",",
RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& )],
Scaled[{0.7, 0.9}], ImageScaled[{0.5, 0.9}],
BaseStyle->{FontSize -> Larger},
FormatType->StandardForm]},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0.5403023230410169},
BaseStyle->{
GrayLevel[0], 10, FontFamily -> "Cambria"},
DisplayFunction->Identity,
Frame->True,
FrameLabel->{
FormBox[
FractionBox[
RowBox[{"5", " ", "\[ExponentialE]", " ", "h"}], "y"],
TraditionalForm],
FormBox["2", TraditionalForm]},
FrameStyle->Directive[
GrayLevel[0]],
FrameTicks->{{{{0.5,
FormBox["0.5`", TraditionalForm], {0, 0.015}}, {0.6,
FormBox["0.6`", TraditionalForm], {0, 0.015}}, {0.7,
FormBox["0.7`", TraditionalForm], {0, 0.015}}, {0.8,
FormBox["0.8`", TraditionalForm], {0, 0.015}}, {0.9,
FormBox["0.9`", TraditionalForm], {0, 0.015}}, {1.,
FormBox["1.`", TraditionalForm], {0, 0.015}}, {0.54,
FormBox["\"\"", TraditionalForm], {0, 0.008}}, {0.56,
FormBox["\"\"", TraditionalForm], {0, 0.008}}, {0.58,
FormBox["\"\"", TraditionalForm], {0, 0.008}}, {0.6,
FormBox["\"\"", TraditionalForm], {0, 0.008}}, {0.62,
FormBox["\"\"", TraditionalForm], {0, 0.008}}, {0.64,
FormBox["\"\"", TraditionalForm], {0, 0.008}}, {0.66,
FormBox["\"\"", TraditionalForm], {0, 0.008}}, {0.68,
FormBox["\"\"", TraditionalForm], {0, 0.008}}, {0.7,
FormBox["\"\"", TraditionalForm], {0, 0.008}}, {0.72,
FormBox["\"\"", TraditionalForm], {0, 0.008}}, {0.74,
FormBox["\"\"", TraditionalForm], {0, 0.008}}, {0.76,
FormBox["\"\"", TraditionalForm], {0, 0.008}}, {0.78,
FormBox["\"\"", TraditionalForm], {0, 0.008}}, {0.8,
FormBox["\"\"", TraditionalForm], {0, 0.008}}, {0.82,
FormBox["\"\"", TraditionalForm], {0, 0.008}}, {0.84,
FormBox["\"\"", TraditionalForm], {0, 0.008}}, {0.86,
FormBox["\"\"", TraditionalForm], {0, 0.008}}, {0.88,
FormBox["\"\"", TraditionalForm], {0, 0.008}}, {0.9,
FormBox["\"\"", TraditionalForm], {0, 0.008}}, {0.92,
FormBox["\"\"", TraditionalForm], {0, 0.008}}, {0.94,
FormBox["\"\"", TraditionalForm], {0, 0.008}}, {0.96,
FormBox["\"\"", TraditionalForm], {0, 0.008}}, {0.98,
FormBox["\"\"", TraditionalForm], {0, 0.008}}, {1.,
FormBox["\"\"", TraditionalForm], {0, 0.008}}}, None}, {{{0.,
FormBox["0.`", TraditionalForm], {0, 0.015}}, {0.2,
FormBox["0.2`", TraditionalForm], {0, 0.015}}, {0.4,
FormBox["0.4`", TraditionalForm], {0, 0.015}}, {0.6,
FormBox["0.6`", TraditionalForm], {0, 0.015}}, {0.8,
FormBox["0.8`", TraditionalForm], {0, 0.015}}, {1.,
FormBox["1.`", TraditionalForm], {0, 0.015}}, {0.,
FormBox["\"\"", TraditionalForm], {0, 0.008}}, {0.05,
FormBox["\"\"", TraditionalForm], {0, 0.008}}, {0.1,
FormBox["\"\"", TraditionalForm], {0, 0.008}}, {0.15,
FormBox["\"\"", TraditionalForm], {0, 0.008}}, {0.2,
FormBox["\"\"", TraditionalForm], {0, 0.008}}, {0.25,
FormBox["\"\"", TraditionalForm], {0, 0.008}}, {0.3,
FormBox["\"\"", TraditionalForm], {0, 0.008}}, {0.35,
FormBox["\"\"", TraditionalForm], {0, 0.008}}, {0.4,
FormBox["\"\"", TraditionalForm], {0, 0.008}}, {0.45,
FormBox["\"\"", TraditionalForm], {0, 0.008}}, {0.5,
FormBox["\"\"", TraditionalForm], {0, 0.008}}, {0.55,
FormBox["\"\"", TraditionalForm], {0, 0.008}}, {0.6,
FormBox["\"\"", TraditionalForm], {0, 0.008}}, {0.65,
FormBox["\"\"", TraditionalForm], {0, 0.008}}, {0.7,
FormBox["\"\"", TraditionalForm], {0, 0.008}}, {0.75,
FormBox["\"\"", TraditionalForm], {0, 0.008}}, {0.8,
FormBox["\"\"", TraditionalForm], {0, 0.008}}, {0.85,
FormBox["\"\"", TraditionalForm], {0, 0.008}}, {0.9,
FormBox["\"\"", TraditionalForm], {0, 0.008}}, {0.95,
FormBox["\"\"", TraditionalForm], {0, 0.008}}, {1.,
FormBox["\"\"", TraditionalForm], {0, 0.008}}}, None}},
GridLines->{{0., 0.2, 0.4, 0.6, 0.8, 1., {0.1,
Dashing[{Small, Small}]}, {0.30000000000000004`,
Dashing[{Small, Small}]}, {0.5,
Dashing[{Small, Small}]}, {0.7,
Dashing[{Small, Small}]}, {0.9,
Dashing[{Small, Small}]}}, {0.5, 0.6, 0.7, 0.8, 0.9, 1., {0.55,
Dashing[{Small, Small}]}, {0.6499999999999999,
Dashing[{Small, Small}]}, {0.75,
Dashing[{Small, Small}]}, {0.8500000000000001,
Dashing[{Small, Small}]}, {0.95,
Dashing[{Small, Small}]}}},
GridLinesStyle->Directive[
GrayLevel[0.5]],
ImagePadding->All,
Method->{
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}},
"DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{0, 1}, {0.5403023230410169, 0.9999999999999998}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}],
InterpretTemplate[Legended[
Graphics[{{{{{}, {},
Annotation[{
Directive[
Opacity[1.],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]],
Line[CompressedData["
1:eJwV1nk0ldsbB3DS4Cqz283cgJCkFNVV30qRqYwVIkOZGky3RFfFNVSmQqcB
UYabqcNxkKkB5WdKhi7C4RxD5jdFxvTb9lrv2uuz3r/2ftb3efYGB3fTc8u4
uLgSyLe0658bbHwzZLF/8dfSorBcW8KjW3wn7m9+PbBk9cSH8Xnih/H9xOLj
JfdJyQX4KBxDVGSZ1JIN6lsZCeLm2NGwcH6RWC5cOvWXrCW+iZfe+km8oO/4
wF7BFhoe814LxMNBLZX2NHswm4uV54lPnp0uixY/Cy+dOfoscaW2RGFFvBPe
1xQtmyFW27QvZ1LWFRaOsxt/EMcvs0uXTz4PMdEioUliXk7gsxMKl6DXNVM7
QVzc01RfYe6B0HcvzSliD+Oz+qdpnshrmMkYJe7aFqodIf4XJq1myQEpxCau
eyNvfRln+ouu9xLrC2ZovYq/AqeUOb4e4oLxul2UrC/s/1sIayO+YGvLCLX3
g5LFq5stxBs/UKrrk69BYz2X9kfiyGwRRROF69hesFytiviIdErKkPMNeEVV
WZUTX3//WOit+U3ENfKZlRHv1FCJsKQFoCBHJItBnPT78ZA74kGYrFXkiiO+
Vv+g8kRxELZ0UrRY4hPBPcs2WQcjKEFzPoJ4zZTnjZL4ECTa6KncJL7aEnt1
VPY2JFf7qDkQm4V3Fbx8cxt17YfVrYhVDytMBdnfQXl+DI/pUj3zCj2lk8Nw
s5q55iCxScxnt2MKkYjpWvFWiljFYFO6RFUknt7r2ia6dN88F74MOEdhVYXG
hd+IzxQt5r42v4u6jotGU4sUfle6q3qKdg/Hn3/NrSEO4M3bfFs8Flq1J3ku
ECvr3rvF8IhFmeRqDVvipmD3oY6qWKxXcN5qTCzHo5KpeuU+xBvF3dSJ3/9M
UW1poqHU+4Lk9E9y3u+0XbLhj6A+2W3jTZy//TLtaO8jyK5S6bAntvUwm/bc
+xgL/26UNiamjwkWVQ4+RvwfQtQWYtPBW1puR+Lx1YGq6Vmg8LDLTzt/8QmE
C1kOID4oZZnCskhE1co+ZWXiYSvNFbzZiQhXoBWKEcuM+jpmb01C82Vu2aF5
Cu6uGvJcnUlw/d+MfBSxyFn689Tdz2BzPErs4xyFU5ZP6V8nUhDNHXdZfpYC
1WHO90wiFZOm8iV8xCG2vOfMtFOxIXO+jpqhkOfoLlEQmwonmQiLImKBS/uC
r2mmIXRQd06P+F1gu9VK/3/B23U42n6awo4s4ZVSvBlIn8v86TpFoVr1nV29
WgYC2oXrjxLb5V4tuW6ZgeymapfNxBEF3R7sjAyYjqqt6JukMPgmuyPNKBMG
RexGK+Inn/Ryt8dkYXPOYvH+7xRW/wo4rStDx8X+V/XdX8l9uZ60VdGhQ3fa
nXpJLNeiYid8iY50lb+77xHvT2917CijQ20qTVmbuCidll+omoODTMOLyRSF
MbPRUoMPOTBNFEyxGqdg8fxBrTc/A8bPdrcnj5B82wQaOm1ggEqofn+FmCNy
sf7ULgYch8oC9Yjd/Q817LNhIOR247nxYQq3TceaVmUzkJiX1baLuGzh0Oc4
wzyENnt6lgxSkDcZH6wIY6Ju5wHPp/0UJG7o7nV+ykRr3cpGV2Kh7KQwvkIm
0mN8fmwnnuM1UzXhMJGmYxn9to/CxzeF3qzd+Qi+pSjA6qXgpxawONOfDxa/
6do1HAofBMXEVA8U4lZkxXktFgWfD3vwcLIIb0uED49/IvVTze+v5i2G/LHO
8izilAi18HmpYvC0fRU4T9xouLnd9gj5f3lW4EsLhS21Yt7ytGI4WMe+6Gym
0F1FpTE0SzAheuzCq0YKum9TBer9SmGeVttnXU/hD6Ywi5v7NdYxajmLFaRf
cbTrGrTKEdcuKvIzi0K5W4Kk5WglXFiZhnXRFKYU9glmX6zCZt/TE4o+FJbN
ZgpJytfAN953C9OCgsYvuwKzF3UYUd2WukudQl3Qzg/vlRvgH0IvthSgIHt3
ZDZ9/CPcXtnaTnPGMTLdzfqk1oRsZJ4xKRxHynBJjUBkM8TeGatHB41DQPpf
qq+vBdsk7zEMj48j3DXfKUnuP3xjXj4RKTGOHwcy+1xutKJ8UMaDlzWGv3ZU
MtdWtAFrg/y8n42h+0VlWOOGz+g8tGgRbjuGebeWOCW/DqSXr30Uum4MWw6u
WnQq6URfTCPX/pZR6D7b4Jz7BwtXPz0c+xUyCh/pMxvZp7txjWlVNfDnKFRG
LVa3GvWAS8so4h9qBKKCX3kr53qgddvY5f6jESx/HUffFM+GjxPP0widEZzf
WdL+mwEHB77sOh4wNIxMPYekVz84UP9n21vxsGFMjUgIDdB6IdorI2OtNox8
M12e2MN9cPdZ8OOvHcKNo8GJzIE+CH2+NPDBdQgbuvTbkoP7kWvkasXNO4S9
mkGx4jsGsJK/v1chbhCnZRpmuZsHkLBSxlxEfRBTNREcj4AviLcX0Ql7/QUP
l9v+ZSo3iNhPwSFbTb5AlJX/bFnlIJIUFaXpnAGs8A8w3+M5hJpKVo+xywC4
0m3pHJFhVJ0oNaz93g+vx/QIkfJh0I779fB796Nsyy1e4UsjuO/MyND81gdh
fS+VQIFRhDw/9m3Apw+dWz82+5aOQlOy5wb3RC9ynkCuj9RBMXr7xIJHL2zo
GsLSi2Po0Xbxok1wcDP4aUBnxjhyu3XdDM5xkD0oHSdgSOEf6zUG13vYuJUQ
bMc6RqGmrWm/EouNs6Zj8i9MKIgF6Am2dLAhVVqaY3SS5KrCUkeplY07Udbv
wx0oNO8O5W+qZ8NF49EEny+ZIz9ll0uXsLExSOzoqjQKgnzPGQ/vs7G4+2/+
1uck143ORxDDRvtYb1NaJpljH8/n999l4+7JPBudXAoOfGZbd4Sz8UvZ1Du4
lEJ66Hr/6kA2OhujnvCQ3O0xqk6acGfjZci0YzPJqb/X3G+0i2zE/nlGKbmN
Qtq+YuO959kwSFVlHiK5v+Q2cyXQiY3iq/XVAUPkXfBiQkHYhg3a1l1RJqMU
uO5J+DOt2PDkxJtvIH1wj9t0zslTbCgaXuh+Q/ruQlZ3boIZG8u5W1Lukr7e
eHHy+gETNnry/3SzI3OE1tyg1HuMjVK35G1qZI7F3bnCCDZk44Hs6qmld5gX
xtYp6rPxfyH2Lo0=
"]]}, "Charting`Private`Tag$28075#1"]}}, {}}, {{}, {{{
Directive[
PointSize[0.012833333333333334`],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]],
GeometricTransformation[
Inset[
Style[
Graphics[{{
GrayLevel[1],
Disk[{0, 0},
Offset[{3, 3}]]},
AbsoluteThickness[1.5],
Dashing[{}],
Circle[{0, 0},
Offset[{3, 3}]]}],
GraphicsBoxOptions -> {DefaultBaseStyle -> Directive[
PointSize[0.012833333333333334`],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}], {0., 0.}, Automatic,
Scaled[9.75]], {{{0., 1.}}, {{0.2, 0.9800665778412416}}, {{0.4,
0.9210609940028851}}, {{0.6, 0.8253356149096783}}, {{0.8,
0.6967067093471654}}, {{1., 0.5403023058681398}}}]}}, {{
Directive[
PointSize[0.012833333333333334`],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}, {}}, {{
Directive[
PointSize[0.012833333333333334`],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}, {}}}, {{}, {}}}},
FrameLabel -> {(5 E) ($CellContext`h/$CellContext`y), 2}, Frame -> True,
FrameLabel -> {(5 E) ($CellContext`h/$CellContext`y), "Y,y"}, FrameStyle ->
Directive[
GrayLevel[0]],
FrameTicks -> {{{{0.5, 0.5, {0, 0.015}}, {0.6, 0.6, {0, 0.015}}, {
0.7, 0.7, {0, 0.015}}, {0.8, 0.8, {0, 0.015}}, {
0.9, 0.9, {0, 0.015}}, {1., 1., {0, 0.015}}, {
0.54, "", {0, 0.008}}, {0.56, "", {0, 0.008}}, {
0.58, "", {0, 0.008}}, {0.6, "", {0, 0.008}}, {
0.62, "", {0, 0.008}}, {0.64, "", {0, 0.008}}, {
0.66, "", {0, 0.008}}, {0.68, "", {0, 0.008}}, {
0.7, "", {0, 0.008}}, {0.72, "", {0, 0.008}}, {
0.74, "", {0, 0.008}}, {0.76, "", {0, 0.008}}, {
0.78, "", {0, 0.008}}, {0.8, "", {0, 0.008}}, {
0.82, "", {0, 0.008}}, {0.84, "", {0, 0.008}}, {
0.86, "", {0, 0.008}}, {0.88, "", {0, 0.008}}, {
0.9, "", {0, 0.008}}, {0.92, "", {0, 0.008}}, {
0.94, "", {0, 0.008}}, {0.96, "", {0, 0.008}}, {
0.98, "", {0, 0.008}}, {1., "", {0, 0.008}}},
None}, {{{0., 0., {0, 0.015}}, {0.2, 0.2, {0, 0.015}}, {
0.4, 0.4, {0, 0.015}}, {0.6, 0.6, {0, 0.015}}, {
0.8, 0.8, {0, 0.015}}, {1., 1., {0, 0.015}}, {0., "", {0, 0.008}}, {
0.05, "", {0, 0.008}}, {0.1, "", {0, 0.008}}, {
0.15, "", {0, 0.008}}, {0.2, "", {0, 0.008}}, {
0.25, "", {0, 0.008}}, {0.3, "", {0, 0.008}}, {
0.35, "", {0, 0.008}}, {0.4, "", {0, 0.008}}, {
0.45, "", {0, 0.008}}, {0.5, "", {0, 0.008}}, {
0.55, "", {0, 0.008}}, {0.6, "", {0, 0.008}}, {
0.65, "", {0, 0.008}}, {0.7, "", {0, 0.008}}, {
0.75, "", {0, 0.008}}, {0.8, "", {0, 0.008}}, {
0.85, "", {0, 0.008}}, {0.9, "", {0, 0.008}}, {
0.95, "", {0, 0.008}}, {1., "", {0, 0.008}}}, None}}, BaseStyle -> {
GrayLevel[0], 10, FontFamily -> "Cambria"},
GridLines -> {{0., 0.2, 0.4, 0.6, 0.8, 1., {0.1,
Dashing[{Small, Small}]}, {0.30000000000000004`,
Dashing[{Small, Small}]}, {0.5,
Dashing[{Small, Small}]}, {0.7,
Dashing[{Small, Small}]}, {0.9,
Dashing[{Small, Small}]}}, {0.5, 0.6, 0.7, 0.8, 0.9, 1., {0.55,
Dashing[{Small, Small}]}, {0.6499999999999999,
Dashing[{Small, Small}]}, {0.75,
Dashing[{Small, Small}]}, {0.8500000000000001,
Dashing[{Small, Small}]}, {0.95,
Dashing[{Small, Small}]}}}, GridLinesStyle -> Directive[
GrayLevel[0.5]], {
DisplayFunction -> Identity, Ticks -> {Automatic, Automatic},
AxesOrigin -> {0, 0.5403023230410169},
FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
GridLines -> {None, None}, DisplayFunction -> Identity,
PlotRangePadding -> {{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}}, PlotRangeClipping -> True, ImagePadding -> All,
DisplayFunction -> Identity, AspectRatio -> GoldenRatio^(-1),
Axes -> {True, True}, AxesLabel -> {None, None},
AxesOrigin -> {0, 0.5403023230410169}, DisplayFunction :> Identity,
Frame -> {{False, False}, {False, False}},
FrameLabel -> {{None, None}, {None, None}},
FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
GridLines -> {None, None}, GridLinesStyle -> Directive[
GrayLevel[0.5, 0.4]],
Method -> {
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}},
"DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" ->
None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange -> {{0, 1}, {0.5403023230410169, 0.9999999999999998}},
PlotRangeClipping -> True, PlotRangePadding -> {{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.02],
Scaled[0.02]}}, Ticks -> {Automatic, Automatic}}],
Placed[
Unevaluated[
SwatchLegend[{
Directive[
Opacity[1.],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}, {1, 2, 3, 4}, LegendMarkers -> {{
Graphics[{
Line[{
Offset[{20, 0}],
Offset[{-20, 0}]}], {
GrayLevel[1],
Disk[{0, 0},
Offset[{3, 3}]]},
AbsoluteThickness[1.5],
Dashing[{}],
Circle[{0, 0},
Offset[{3, 3}]]}], 9.75}}, LabelStyle -> {},
LegendFunction -> $CellContext`shadowbox, LegendLayout ->
"Column"]], {{0.7, 0.9}, {0.5, 0.9}}, Identity]]& ],
AutoDelete->True,
Editable->True,
SelectWithContents->False,
Selectable->True]], "Output",
CellLabel->
"Out[177]=",ExpressionUUID->"fbb48891-c3ee-48ef-92e5-bff235ab2d8d"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"myplot", "[", "Plot", "]"}], "[",
RowBox[{"lable", "\[Rule]",
RowBox[{"{",
RowBox[{"1", ",", "2", ",", "3", ",", "4"}], "}"}]}],
RowBox[{"(*",
RowBox[{",",
RowBox[{"LegendLayout", "\[Rule]", "\"\<Row\>\""}]}], "*)"}],
RowBox[{"(*",
RowBox[{",",
RowBox[{"PlotMarkers", "\[Rule]",
RowBox[{"{",
RowBox[{
"\"\<\[Alpha]\>\"", ",", "\"\<\[Beta]\>\"", ",", "\"\<\[Gamma]\>\"",
",", "\"\<1\>\""}], "}"}]}]}], "*)"}], "]"}], "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Cos", "[", "x", "]"}], ",",
RowBox[{"Sin", "[", "x", "]"}], ",", "x", ",",
RowBox[{"x", "+", "1"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",", "1"}], "}"}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"6",
FractionBox["h", "y"], " ", "E"}], ",", "2"}], "}"}]}]}],
"]"}]], "Input",
CellLabel->"In[5]:=",ExpressionUUID->"9b1263d4-3aff-4938-afb2-eb69b337e556"],
Cell[BoxData[
TagBox[
GraphicsBox[{{{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6],
Opacity[1.], LineBox[CompressedData["
1:eJwV1nk0ldsbB3DS4Cqz283cgJCkFNVV30qRqYwVIkOZGky3RFfFNVSmQqcB
UYabqcNxkKkB5WdKhi7C4RxD5jdFxvTb9lrv2uuz3r/2ftb3efYGB3fTc8u4
uLgSyLe0658bbHwzZLF/8dfSorBcW8KjW3wn7m9+PbBk9cSH8Xnih/H9xOLj
JfdJyQX4KBxDVGSZ1JIN6lsZCeLm2NGwcH6RWC5cOvWXrCW+iZfe+km8oO/4
wF7BFhoe814LxMNBLZX2NHswm4uV54lPnp0uixY/Cy+dOfoscaW2RGFFvBPe
1xQtmyFW27QvZ1LWFRaOsxt/EMcvs0uXTz4PMdEioUliXk7gsxMKl6DXNVM7
QVzc01RfYe6B0HcvzSliD+Oz+qdpnshrmMkYJe7aFqodIf4XJq1myQEpxCau
eyNvfRln+ouu9xLrC2ZovYq/AqeUOb4e4oLxul2UrC/s/1sIayO+YGvLCLX3
g5LFq5stxBs/UKrrk69BYz2X9kfiyGwRRROF69hesFytiviIdErKkPMNeEVV
WZUTX3//WOit+U3ENfKZlRHv1FCJsKQFoCBHJItBnPT78ZA74kGYrFXkiiO+
Vv+g8kRxELZ0UrRY4hPBPcs2WQcjKEFzPoJ4zZTnjZL4ECTa6KncJL7aEnt1
VPY2JFf7qDkQm4V3Fbx8cxt17YfVrYhVDytMBdnfQXl+DI/pUj3zCj2lk8Nw
s5q55iCxScxnt2MKkYjpWvFWiljFYFO6RFUknt7r2ia6dN88F74MOEdhVYXG
hd+IzxQt5r42v4u6jotGU4sUfle6q3qKdg/Hn3/NrSEO4M3bfFs8Flq1J3ku
ECvr3rvF8IhFmeRqDVvipmD3oY6qWKxXcN5qTCzHo5KpeuU+xBvF3dSJ3/9M
UW1poqHU+4Lk9E9y3u+0XbLhj6A+2W3jTZy//TLtaO8jyK5S6bAntvUwm/bc
+xgL/26UNiamjwkWVQ4+RvwfQtQWYtPBW1puR+Lx1YGq6Vmg8LDLTzt/8QmE
C1kOID4oZZnCskhE1co+ZWXiYSvNFbzZiQhXoBWKEcuM+jpmb01C82Vu2aF5
Cu6uGvJcnUlw/d+MfBSxyFn689Tdz2BzPErs4xyFU5ZP6V8nUhDNHXdZfpYC
1WHO90wiFZOm8iV8xCG2vOfMtFOxIXO+jpqhkOfoLlEQmwonmQiLImKBS/uC
r2mmIXRQd06P+F1gu9VK/3/B23U42n6awo4s4ZVSvBlIn8v86TpFoVr1nV29
WgYC2oXrjxLb5V4tuW6ZgeymapfNxBEF3R7sjAyYjqqt6JukMPgmuyPNKBMG
RexGK+Inn/Ryt8dkYXPOYvH+7xRW/wo4rStDx8X+V/XdX8l9uZ60VdGhQ3fa
nXpJLNeiYid8iY50lb+77xHvT2917CijQ20qTVmbuCidll+omoODTMOLyRSF
MbPRUoMPOTBNFEyxGqdg8fxBrTc/A8bPdrcnj5B82wQaOm1ggEqofn+FmCNy
sf7ULgYch8oC9Yjd/Q817LNhIOR247nxYQq3TceaVmUzkJiX1baLuGzh0Oc4
wzyENnt6lgxSkDcZH6wIY6Ju5wHPp/0UJG7o7nV+ykRr3cpGV2Kh7KQwvkIm
0mN8fmwnnuM1UzXhMJGmYxn9to/CxzeF3qzd+Qi+pSjA6qXgpxawONOfDxa/
6do1HAofBMXEVA8U4lZkxXktFgWfD3vwcLIIb0uED49/IvVTze+v5i2G/LHO
8izilAi18HmpYvC0fRU4T9xouLnd9gj5f3lW4EsLhS21Yt7ytGI4WMe+6Gym
0F1FpTE0SzAheuzCq0YKum9TBer9SmGeVttnXU/hD6Ywi5v7NdYxajmLFaRf
cbTrGrTKEdcuKvIzi0K5W4Kk5WglXFiZhnXRFKYU9glmX6zCZt/TE4o+FJbN
ZgpJytfAN953C9OCgsYvuwKzF3UYUd2WukudQl3Qzg/vlRvgH0IvthSgIHt3
ZDZ9/CPcXtnaTnPGMTLdzfqk1oRsZJ4xKRxHynBJjUBkM8TeGatHB41DQPpf
qq+vBdsk7zEMj48j3DXfKUnuP3xjXj4RKTGOHwcy+1xutKJ8UMaDlzWGv3ZU
MtdWtAFrg/y8n42h+0VlWOOGz+g8tGgRbjuGebeWOCW/DqSXr30Uum4MWw6u
WnQq6URfTCPX/pZR6D7b4Jz7BwtXPz0c+xUyCh/pMxvZp7txjWlVNfDnKFRG
LVa3GvWAS8so4h9qBKKCX3kr53qgddvY5f6jESx/HUffFM+GjxPP0widEZzf
WdL+mwEHB77sOh4wNIxMPYekVz84UP9n21vxsGFMjUgIDdB6IdorI2OtNox8
M12e2MN9cPdZ8OOvHcKNo8GJzIE+CH2+NPDBdQgbuvTbkoP7kWvkasXNO4S9
mkGx4jsGsJK/v1chbhCnZRpmuZsHkLBSxlxEfRBTNREcj4AviLcX0Ql7/QUP
l9v+ZSo3iNhPwSFbTb5AlJX/bFnlIJIUFaXpnAGs8A8w3+M5hJpKVo+xywC4
0m3pHJFhVJ0oNaz93g+vx/QIkfJh0I779fB796Nsyy1e4UsjuO/MyND81gdh
fS+VQIFRhDw/9m3Apw+dWz82+5aOQlOy5wb3RC9ynkCuj9RBMXr7xIJHL2zo
GsLSi2Po0Xbxok1wcDP4aUBnxjhyu3XdDM5xkD0oHSdgSOEf6zUG13vYuJUQ
bMc6RqGmrWm/EouNs6Zj8i9MKIgF6Am2dLAhVVqaY3SS5KrCUkeplY07Udbv
wx0oNO8O5W+qZ8NF49EEny+ZIz9ll0uXsLExSOzoqjQKgnzPGQ/vs7G4+2/+
1uck143ORxDDRvtYb1NaJpljH8/n999l4+7JPBudXAoOfGZbd4Sz8UvZ1Du4
lEJ66Hr/6kA2OhujnvCQ3O0xqk6acGfjZci0YzPJqb/X3G+0i2zE/nlGKbmN
Qtq+YuO959kwSFVlHiK5v+Q2cyXQiY3iq/XVAUPkXfBiQkHYhg3a1l1RJqMU
uO5J+DOt2PDkxJtvIH1wj9t0zslTbCgaXuh+Q/ruQlZ3boIZG8u5W1Lukr7e
eHHy+gETNnry/3SzI3OE1tyg1HuMjVK35G1qZI7F3bnCCDZk44Hs6qmld5gX
xtYp6rPxfyH2Lo0=
"]]},
Annotation[#, "Charting`Private`Tag$2680#1"]& ],
TagBox[
{RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6],
Opacity[1.], LineBox[CompressedData["
1:eJw10H840wkAx/EpRXSK7qqFPCruYlJSSnd9XJFiEumkQ0v0Q5fyK5fL1S6/
EuEeT+ZCaeunJ6trPMpKaVfHs/zayo/WZrP24zt8p0IUbv64Pz7P6/n8+7aP
OhYcM41CoQQYNqVfjKbtiXbXxv813rzouIzqjoHS1tgpV19mld6nemNdYULW
lP4vO/4uo4Yg7LZX5JSh0SOP/qRGQzGz7EihwbeuWZvzqEl4Gr5kLMvglW8C
M3Oo6VAfa2QkG2Sa3v/2HLUI2aLxQneDu8MquPpBDn5K7pbE6zkwn2SG+y7m
Qu5pZcagcuEQNKB5dp6HRjtex+JMHlKa14P18QEYw5x4D+0DLOBZSo2M6hET
lpNY3v8YNYrNwpbvG5C8w3vAxKUBDbFl1mF9Asjn5tRmigUYcvxhzp2jLyCy
9gzcSH+BaaOVc60dmhA0mn3m1nAj1k4yanZWCcGe5ZNnFi+EMN29+blTC957
lk84SZphV6AbvTXQisyKeW0+/FboRmTSVyvbEfj409uo923gEHVNFhdEWBhn
45jlJYKF7Q1SqRSjauGoel+mGLmHqw9cWfYa1a7LB915rzDsVak8dLoD8kZ0
O4++RpKbgDf/WSfsWPIYG8dOyKoE59vsu8Hy9vY9ebgLn2PFl5anvoFo8F7d
bE43nH80mThQJ4H1740bmp+/ge9V+4P3Fkihyi61+DghQYrt3iXycBnou6Xn
I+2koPXtMu8I6AFlRsFBmocM8+boTQVjPVC6XH9wbVUPjOsvcZeWyjG25tpD
Y34PjrjXdc3yVyDJ349nvUOOym1RVx4PK0BrZ7GyZHIM6RbNVV3sha/b2ea0
/QpU7/SdXuStROimm6YFegVOb824zFMpYR9ydPq2hF7Yv/XrZGe8g116V24+
2QtPj/QiqpsKDjtnlgUnKxG+uGXUSKTCak3cQVO9EkNNeYrjTDW2UxSRtQnv
wDKOTApepsE/B+jFTOId5kmrr04TaDAuFlxoilBhRhozZH28FgwZzXlfpwqU
W5FchRWBihPFbse2qpHwFzfPqoGAh+SE+cZ6NR45Z5taxungSEq3rFilgaVf
Au0Piz48jTrLNirRQOLSKjrJ74N+6QdO90wt7pZjmTKyHzap4R+EsVpEcNda
2k4Yvp5soDdpcSajgim5PYAvPsXq+a4E7mhsL1nQSbQX0soScwhkl2UwpNtJ
pAoDy2bkEogO7neoCiLhTPtyqDiPgA2ffzcglETT+96ohwUEcvJ/fp4bRaJN
wuoZv0jg0NqSQbOTJKgpvZTf2ASWpH+91eQ6iS9VR+oD+AQm1p36quMmCaGm
1qnrEYGu/t7265UkrFpo+6LrCRSE3o/Yco+E29FTrqmGDpNOwYkZfBKzS2OC
2P8SkLTll08XkYhIq7mhExOozRzZL3pFwsTHSJD4mkDRhr3L2Z0kdlM3VX7u
IOB/bQVvk5QEvbmk2+wNgYe/vmxkakmMC+l8RzmBiy5r8oP6SJzZ88H1joJA
vKI0xJ4kYSZMiVutJPAd/RfZk48kqrdb0KEmYGwk5hSMkCjZs0gn0BDoqd4Q
yxgjYeH1KcSPIMCPZbuuHCeRNs4516IjUGxnPjQ5SaKm0PZcSD+B/wA2BX0d
"]]},
Annotation[#, "Charting`Private`Tag$2680#2"]& ],
TagBox[
{RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[1.6],
Opacity[1.], LineBox[CompressedData["
1:eJxFxW0w03EcAPCNdZRrjMr9adxE5SlOUlKpuMhDneHk8nRCWk/InXR1WrdJ
nua6nZTnh5R2jGyuMnHsdDnPo1GzMUtj83RndnRZ9cL39+JzH0r8XWqiHg6H
C/7n/wGJypGu+fAz2xN8LFJkmLv39kcrS8paMV84cED8vhwLgyMStB3PsQR4
yuWpTwGWDlftvZydizFgumHroWcYG74SWc1dWa2DjXT0KD8rLmwXsqTsyePB
GYOe3iVrH2FzHkmKx3fCbXKf/qFT3XA3rdwyUi2ENQdPGzfe/gLrbXBMLO36
YA9dXFtoUz/cz3Af7HUYgq2LVBsNS8OwSiuTjruOwnUL7X3EQhFMJL9ZVijG
4Pwb/KQq22/w+lmOIjlLDKe7CXn7eiZgWZMwb4TyHf5NGyu1f/ADdjxnsJXU
LoH9aijXW8ylcAY51mYmSgY7qcONxMHTsJnxiqFwE03oLOUeKJuBb7q3T+4M
lMOci/FVn9fRGpWFyVzxLMwP9dNn+yrgLH9mJW8OTZkKmKhl/oRPHmewMbc5
OMpqaAMvQmv6CuQp9F9wCSEmnWqrhM2k/Bo9IXrHI3qYZ+o8jGuI4cpNF+C0
V9wC0250h2OOIemOCiYFpDk9IaphifOwKFOAbq7wtlXELMLRXA8SeQv9mFlN
l7xbghuV5FJi0DKcU86Mk15CJ1AX7ZpC0PsFgubgCHQu62pvfjw62ePl6q5M
tA1jj79BPXrrxMPd4rfoycXZ0XoOuiiiNfpCC1rnQL3HFKAlI6wKfRH6Q7b2
mmgczfaKta+dQAe+PsI7L0V/uj/wlT6PLnY+xgpRo1PlZWGUZfThoFuyrjU0
AT9WV6RFT/O9aHGbaAGt1sX1D/qFtZFGp0P/BaO4ekM=
"]]},
Annotation[#, "Charting`Private`Tag$2680#3"]& ],
TagBox[
{RGBColor[0.922526, 0.385626, 0.209179], AbsoluteThickness[1.6],
Opacity[1.], LineBox[CompressedData["
1:eJwV0H8803kAx/FNOpIU+fFYkiM6paSSS7rekgciFenIablVKnWVuKtcHZN1
0g8enSth+sEpPFjKSteKh5SSn1HDaSvNjzG+82Obbfhc/fF6PP9/2bCOBu3T
odFoAV/6qt++vuZK6Y71LsfiptNocuhunHdMzHBBHl3F3UCXY9WNjOwHDC+Y
/hXjelZHDv964X0uIxij/MP7v5kuR8he1dMrjL24r2W+NjSQ48PyPzdeYsTC
+Sumctw023ouhZEExxxDs1UOcrD1H3x3npEO27ocu8htcoTuvMWTD+fhjcEZ
TuodOWYSdrjPAh7GZ0vWjozLYR841Pf8QhlMui+vF/gO40SDGzLGHqM3e/Ts
phvDsCgzFtHpFdhg+clqjnwYD7s21jWuq0LI6WT1dZ8RVEVxLXfKqhFaHLPw
AncEikU/zC7+pQbivN5b/MER6KiL5lja1+LbeDNWrtcoXEnEw+0ldei1rvut
9u9R1CW5NLxc0ojMtJftod2jsE4bUBcMNUFfEvdHofsYBlRi0Tvnt9BOPjqx
+uIY8vqf1BpdbkGBpuT+2c9jMLK6Q0kkrfCqkbq7uSlw8SA/8qbde+wJK2Y4
nFdA6VEkORAvxPqmJW4dYgViV1aXmT9vA9dwRfELZyXEJdUXmm06UO44zIpN
VkIb1Zq1OO4/VMxTRKaIlHDcoDcV+aQT/k3sinYnFXxu2+wvtRDhyoFXO2Uc
FU5Y7bb9FC4Gs+aa7xqhCktlO2YKAz7CXFnIGVg0jrmz5frVmo9I0Tupyzoz
Dt2KLN7C7E9IFNcLjRvGccjlSfsM/y64Zn6QJdmrUbSJdfOZsgvv7VZs2/27
GoqBeXN6rn6G5tdZ+jFv1OBv95mW7iVBR0Eu3c9Wg3hfzo2yHgk88qq2hsVo
YPPBry2X0420I/ay5ioN1n6flM5Y2QOupWetIUOL8AWNanpLD5xSeycSDmqh
qL3UdYzdi7hu7+jySi0ydJmxQXZ92KyzfO1ikwnMFfFv61T3wYAKC6SzJjD9
DDvYLVqKxGcehdnlE6AVMHldJv1ICOaFRM+YxPFM3iWTqn641Qu9Z/w8iaeO
yfrGRwYgMvNK0n80CWO/40sTjWTQt3cz/7IWncuaWk4JZBgy75OuY07hXg7s
JMxBhDZamxznTWEXz9XYamoQJSFZyUZkCgmcW+zOwiFUVjV5HNlBUNxnlWW0
mcKPY5cD9PIJkrmcCNEWCtUNns5H7xDsDRq0LwmksLJAaSK8SzBfILgXEELB
iMlsyy8iSEn96eVFFoUXNcv2eJcSHHC9PmxwioJLVt1JjoDANsnUVy+fgrGn
Qd60FoKpNadnCe9SiJ//7NyhVoL2wc9v84soyJTRB1veEaSFPNjlXUrhVVG7
U24bAVkSFMMRUEgwK3jsKSLobE7NmdZCYajPp5EtJSg/p9rT8o5C+HNtqbSf
IN199+LcNgq1XF56oIzA/x+nMk8RhfwgizAbiuDfk/Wv2VIKuwQ9ksoxgqvL
VqcGyii8uZpZ46AkiO7KDrahKKyJ3lKYpiJw2HxYXDlGwXTRw6MRGgJdemte
mopCIi0q6JWW4CPfPSpCQ0HeYbXaeZJAEJW73HmSApPfbJExRXDNeqaCEAp1
qRwNIQT/A++shPM=
"]]},
Annotation[#, "Charting`Private`Tag$2680#4"]& ]}, {}}, {{}, {{
{RGBColor[0.368417, 0.506779, 0.709798], PointSize[
0.012833333333333334`], AbsoluteThickness[1.6],
GeometricTransformationBox[InsetBox[
FormBox[
StyleBox[
GraphicsBox[{
{GrayLevel[1], DiskBox[{0, 0}, Offset[{3., 3.}, {0., 0.}]]},
{AbsoluteThickness[1.5], Dashing[{}],
CircleBox[{0, 0}, Offset[{3., 3.}, {0., 0.}]]}}],
StripOnInput->False,
GraphicsBoxOptions->{DefaultBaseStyle->Directive[
PointSize[0.012833333333333334`],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}],
TraditionalForm], {0., 0.}, Automatic, Scaled[9.75]], {{{0.,
1.}}, {{0.2, 0.9800665778412416}}, {{0.4, 0.9210609940028851}}, {{
0.6, 0.8253356149096783}}, {{0.8, 0.6967067093471654}}, {{1.,
0.5403023058681398}}}]},
{RGBColor[0.880722, 0.611041, 0.142051], PointSize[
0.012833333333333334`], AbsoluteThickness[1.6],
GeometricTransformationBox[InsetBox[
FormBox[
StyleBox[
GraphicsBox[{
{GrayLevel[1],
PolygonBox[
NCache[{
Offset[{0, 4}], Offset[{(-2) 3^Rational[1, 2], -2}],
Offset[{2 3^Rational[1, 2], -2}]}, {
Offset[{0, 4}], Offset[{-3.4641016151377544`, -2}],
Offset[{3.4641016151377544`, -2}]}]]},
{AbsoluteThickness[1.5], Dashing[{}],
JoinedCurveBox[NCache[
Line[{Offset[{0, 4}], Offset[{(-2) 3^Rational[1, 2], -2}],
Offset[{2 3^Rational[1, 2], -2}], Offset[{0, 4}]}],
Line[{Offset[{0, 4}], Offset[{-3.4641016151377544`, -2}],
Offset[{3.4641016151377544`, -2}], Offset[{0, 4}]}]],
CurveClosed->True]}}],
StripOnInput->False,
GraphicsBoxOptions->{DefaultBaseStyle->Directive[
PointSize[0.012833333333333334`],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]]}],
TraditionalForm], {0., 0.}, Automatic, Scaled[9.75]], {{{0.,
0.}}, {{0.2, 0.19866933079506122`}}, {{0.4, 0.3894183423086505}}, {{
0.6, 0.5646424733950354}}, {{0.8, 0.7173560908995228}}, {{1.,
0.8414709848078965}}}]},
{RGBColor[0.560181, 0.691569, 0.194885], PointSize[
0.012833333333333334`], AbsoluteThickness[1.6],
GeometricTransformationBox[InsetBox[
FormBox[
StyleBox[
GraphicsBox[{
{GrayLevel[1],
PolygonBox[{
Offset[{0, 3.75}], Offset[{3.75, 0}], Offset[{0, -3.75}],
Offset[{-3.75, 0}]}]},
{AbsoluteThickness[1.5], Dashing[{}],
LineBox[{
Offset[{0, 3.75}], Offset[{3.75, 0}], Offset[{0, -3.75}],
Offset[{-3.75, 0}], Offset[{0, 3.75}]}]}}],
StripOnInput->False,
GraphicsBoxOptions->{DefaultBaseStyle->Directive[
PointSize[0.012833333333333334`],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]]}],
TraditionalForm], {0., 0.}, Automatic, Scaled[9.75]], {{{0.,
0.}}, {{0.2, 0.2}}, {{0.4, 0.4}}, {{0.6, 0.6}}, {{0.8, 0.8}}, {{1.,
1.}}}]},
{RGBColor[0.922526, 0.385626, 0.209179], PointSize[
0.012833333333333334`], AbsoluteThickness[1.6],
GeometricTransformationBox[InsetBox[
FormBox[
StyleBox[
GraphicsBox[{
{GrayLevel[1],
PolygonBox[{
Offset[{-2.75, -2.75}], Offset[{2.75, -2.75}],
Offset[{2.75, 2.75}], Offset[{-2.75, 2.75}],
Offset[{-2.75, -2.75}]}]},
{AbsoluteThickness[1.5], Dashing[{}],
LineBox[{
Offset[{-2.75, -2.75}], Offset[{2.75, -2.75}],
Offset[{2.75, 2.75}], Offset[{-2.75, 2.75}],
Offset[{-2.75, -2.75}]}]}}],
StripOnInput->False,
GraphicsBoxOptions->{DefaultBaseStyle->Directive[
PointSize[0.012833333333333334`],
RGBColor[0.922526, 0.385626, 0.209179],
AbsoluteThickness[1.6]]}],
TraditionalForm], {0., 0.}, Automatic, Scaled[9.75]], {{{0.,
1.}}, {{0.2, 1.2}}, {{0.4, 1.4}}, {{0.6, 1.6}}, {{0.8, 1.8}}, {{1.,
2.}}}]}}, {
{RGBColor[0.368417, 0.506779, 0.709798], PointSize[
0.012833333333333334`], AbsoluteThickness[1.6]},
{RGBColor[0.880722, 0.611041, 0.142051], PointSize[
0.012833333333333334`], AbsoluteThickness[1.6]},
{RGBColor[0.560181, 0.691569, 0.194885], PointSize[
0.012833333333333334`], AbsoluteThickness[1.6]},
{RGBColor[0.922526, 0.385626, 0.209179], PointSize[
0.012833333333333334`], AbsoluteThickness[
1.6]}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}}, {
{RGBColor[0.368417, 0.506779, 0.709798], PointSize[
0.012833333333333334`], AbsoluteThickness[1.6]},
{RGBColor[0.880722, 0.611041, 0.142051], PointSize[
0.012833333333333334`], AbsoluteThickness[1.6]},
{RGBColor[0.560181, 0.691569, 0.194885], PointSize[
0.012833333333333334`], AbsoluteThickness[1.6]},
{RGBColor[0.922526, 0.385626, 0.209179], PointSize[
0.012833333333333334`], AbsoluteThickness[
1.6]}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}}}, {{}, \
{}}}}, InsetBox[
TemplateBox[{"1", "2", "3", "4"},
"SwatchLegend",
DisplayFunction->(FormBox[
GraphicsBox[{
InsetBox[
FormBox[
FrameBox[
StyleBox[
StyleBox[
PaneBox[
TagBox[
GridBox[{{
TagBox[
GridBox[{{
GraphicsBox[{
LineBox[{
Offset[{20, 0}],
Offset[{-20, 0}]}], {
GrayLevel[1],
DiskBox[{0, 0},
Offset[{3, 3}]]},
AbsoluteThickness[1.5],
Dashing[{}],
CircleBox[{0, 0},
Offset[{3, 3}]]}, {
DisplayFunction -> Identity,
DefaultBaseStyle -> {"Graphics",
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}, ImageSize -> {9.75, 9.75},
ImagePadding -> All, PlotRangePadding -> None,
AspectRatio -> Full}, {
AspectRatio -> Full, ImageSize -> {9.75, 9.75},
PlotRangePadding -> None, ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.09205128205128206] ->
Baseline)}], #}, {
GraphicsBox[{
LineBox[{
Offset[{20, 0}],
Offset[{-20, 0}]}], {
GrayLevel[1],
PolygonBox[
NCache[{
Offset[{0, 4}],
Offset[{(-2) 3^Rational[1, 2], -2}],
Offset[{2 3^Rational[1, 2], -2}]}, {
Offset[{0, 4}],
Offset[{-3.4641016151377544`, -2}],
Offset[{3.4641016151377544`, -2}]}]]},
AbsoluteThickness[1.5],
Dashing[{}],
JoinedCurveBox[
NCache[
Line[{
Offset[{0, 4}],
Offset[{(-2) 3^Rational[1, 2], -2}],
Offset[{2 3^Rational[1, 2], -2}],
Offset[{0, 4}]}],
Line[{
Offset[{0, 4}],
Offset[{-3.4641016151377544`, -2}],
Offset[{3.4641016151377544`, -2}],
Offset[{0, 4}]}]], CurveClosed -> True]}, {
DisplayFunction -> Identity,
DefaultBaseStyle -> {"Graphics",
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]]}, ImageSize -> {9.75, 9.75},
ImagePadding -> All, PlotRangePadding -> None,
AspectRatio -> Full}, {
AspectRatio -> Full, ImageSize -> {9.75, 9.75},
PlotRangePadding -> None, ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.09205128205128206] ->
Baseline)}], #2}, {
GraphicsBox[{
LineBox[{
Offset[{20, 0}],
Offset[{-20, 0}]}], {
GrayLevel[1],
PolygonBox[{
Offset[{0, 3.75}],
Offset[{3.75, 0}],
Offset[{0, -3.75}],
Offset[{-3.75, 0}]}]},