-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmodel.py
52 lines (39 loc) · 1.68 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import torch
from torch.autograd import Variable
import torch.nn as nn
import torch.nn.functional as F
import torchvision.models as models
class PneumoniaNet(nn.Module):
def __init__(self, use_gpu, class_counts=(None, None), verbose=False):
"""
class_counts: (num_pos, num_neg) used for weighted loss
"""
super(PneumoniaNet, self).__init__()
self.densenet = models.densenet161(pretrained=True)
num_features = self.densenet.classifier.in_features
self.densenet.classifier = nn.Linear(num_features, 1)
self.use_gpu = use_gpu
if self.use_gpu:
self.densenet = self.densenet.cuda()
self.optimizer = torch.optim.Adam(self.densenet.parameters())
self.scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(self.optimizer, mode='min', factor=0.5, patience=2, verbose=verbose)
self.num_pos, self.num_neg = class_counts
self.num_total = self.num_pos + self.num_neg
def forward(self, img):
return self.densenet(img)
def loss(self, logit, label):
weight = torch.zeros(label.size())
if self.use_gpu:
weight = weight.cuda()
is_pos = label.data == 1
weight[is_pos] = self.num_neg / self.num_total
weight[~is_pos] = self.num_pos / self.num_total
weight = Variable(weight, requires_grad=False)
return F.binary_cross_entropy_with_logits(logit, label, weight)
def train_step(self, img, label):
logit = self(img)
loss = self.loss(logit, label)
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
return loss