-
Notifications
You must be signed in to change notification settings - Fork 8
/
RandUtils.f90
377 lines (332 loc) · 10.8 KB
/
RandUtils.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
module RandUtils
use MpiUtils
implicit none
integer :: rand_inst = 0
integer, parameter :: krand = KIND(1.d0)
integer :: Rand_Feedback = 1
interface RandRotation
module procedure RandRotationS, RandRotationD
end interface
contains
!subroutine init_random_seed()
!integer, allocatable :: seed(:)
!integer :: i, n, un, istat, dt(8), pid, t(2), s
!integer(8) :: count, tms
!
!call random_seed(size = n)
!allocate(seed(n))
!! First try if the OS provides a random number generator
!! Fallback to XOR:ing the current time and pid. The PID is
!! useful in case one launches multiple instances of the same
!! program in parallel.
!call system_clock(count)
!if (count /= 0) then
! t = transfer(count, t)
!else
! call date_and_time(values=dt)
! tms = (dt(1) - 1970) * 365_8 * 24 * 60 * 60 * 1000 &
! + dt(2) * 31_8 * 24 * 60 * 60 * 1000 &
! + dt(3) * 24 * 60 * 60 * 60 * 1000 &
! + dt(5) * 60 * 60 * 1000 &
! + dt(6) * 60 * 1000 + dt(7) * 1000 &
! + dt(8)
! t = transfer(tms, t)
!end if
!s = ieor(t(1), t(2))
!pid = getpid() + 1099279 ! Add a prime
!s = ieor(s, pid)
!if (n >= 3) then
! seed(1) = t(1) + 36269
! seed(2) = t(2) + 72551
! seed(3) = pid
! if (n > 3) then
! seed(4:) = s + 37 * (/ (i, i = 0, n - 4) /)
! end if
!else
! seed = s + 37 * (/ (i, i = 0, n - 1 ) /)
!end if
!call random_seed(put=seed)
!end subroutine init_random_seed
subroutine initRandom(i, i2)
implicit none
integer, optional, intent(in) :: i
integer, optional, intent(in) :: i2
integer seed_in,kl,ij
character(len=10) :: fred
real(krand) :: klr
if (present(i)) then
seed_in = i
else
seed_in = -1
end if
if (seed_in /=-1) then
if (present(i2)) then
kl=i2
if (i2 > 30081) call MpiStop('initRandom:second seed too large')
else
kl = 9373
end if
ij = i
else
call system_clock(count=ij)
ij = mod(ij + rand_inst*100, 31328)
call date_and_time(time=fred)
read (fred,'(e10.3)') klr
kl = mod(int(klr*1000), 30081)
end if
if (Rand_Feedback > 0 ) write(*,'(" Random seeds:",1I6,",",1I6," rand_inst:",1I4)') ij,kl,rand_inst
call rmarin(ij,kl)
end subroutine initRandom
subroutine RandIndices(indices, nmax, n)
integer, intent(in) :: nmax, n
integer indices(n),i, ix
integer tmp(nmax)
if (n> nmax) call MpiStop('Error in RandIndices, n > nmax')
do i=1, nmax
tmp(i)=i
end do
do i=1, n
ix = int(ranmar()*(nmax +1 -i)) + 1
indices(i) = tmp(ix)
tmp(ix) = tmp(nmax+1-i)
end do
end subroutine RandIndices
subroutine RandRotationS(R, N)
!this is most certainly not the world's most efficient or robust random rotation generator
integer, intent(in) :: N
real R(N,N), vec(N), norm
integer i,j
do j = 1, N
do
do i = 1, N
vec(i) = real(Gaussian1())
end do
do i = 1, j-1
vec = vec - sum(vec*R(i,:))*R(i,:)
end do
norm = sum(vec**2)
if (norm > 1e-3) exit
end do
R(j,:) = vec / sqrt(norm)
end do
end subroutine RandRotationS
subroutine RandRotationD(R, N)
!this is most certainly not the world's most efficient or robust random rotation generator
integer, intent(in) :: N
double precision R(N,N), vec(N), norm
integer i,j
do j = 1, N
do
do i = 1, N
vec(i) = Gaussian1()
end do
do i = 1, j-1
vec = vec - sum(vec*R(i,:))*R(i,:)
end do
norm = sum(vec**2)
if (norm > 1e-3) exit
end do
R(j,:) = vec / sqrt(norm)
end do
end subroutine RandRotationD
double precision function GAUSSIAN1()
implicit none
double precision R, V1, V2, FAC
integer, save :: iset = 0
double precision, save :: gset
!Box muller
if (ISET==0) then
R=2
do while (R >= 1.d0)
V1=2.d0*ranmar()-1.d0
V2=2.d0*ranmar()-1.d0
R=V1**2+V2**2
end do
FAC=sqrt(-2.d0*log(R)/R)
GSET=V1*FAC
GAUSSIAN1=V2*FAC
ISET=1
else
GAUSSIAN1=GSET
ISET=0
endif
end function GAUSSIAN1
double precision function CAUCHY1()
implicit none
Cauchy1 = Gaussian1()/max(1d-15,abs(Gaussian1()))
end function CAUCHY1
real function RANDEXP1()
!
! Random-number generator for the exponential distribution
! Algorithm EA from J. H. Ahrens and U. Dieter,
! Communications of the ACM, 31 (1988) 1330--1337.
! Coded by K. G. Hamilton, December 1996, with corrections.
!
real u, up, g, y
real, parameter :: alog2= 0.6931471805599453
real, parameter :: a = 5.7133631526454228
real, parameter :: b = 3.4142135623730950
real, parameter :: c = -1.6734053240284925
real, parameter :: p = 0.9802581434685472
real, parameter :: aa = 5.6005707569738080
real, parameter :: bb = 3.3468106480569850
real, parameter :: hh = 0.0026106723602095
real, parameter :: dd = 0.0857864376269050
u = ranmar()
do while (u<=0) ! Comment out this block
u = ranmar() ! if your RNG can never
enddo ! return exact zero
g = c
u = u+u
do while (u<1.0)
g = g + alog2
u = u+u
enddo
u = u-1.0
if (u<=p) then
randexp1 = g + aa/(bb-u)
return
endif
do
u = ranmar()
y = a/(b-u)
up = ranmar()
if ((up*hh+dd)*(b-u)**2 <= exp(-(y+c))) then
randexp1 = g+y
return
endif
enddo
end function RANDEXP1
! This random number generator originally appeared in ''Toward a Universal
! Random Number Generator'' by George Marsaglia and Arif Zaman.
! Florida State University Report: FSU-SCRI-87-50 (1987)
!
! It was later modified by F. James and published in ''A Review of Pseudo-
! random Number Generators''
!
! THIS IS THE BEST KNOWN RANDOM NUMBER GENERATOR AVAILABLE.
! (However, a newly discovered technique can yield
! a period of 10^600. But that is still in the development stage.)
!
! It passes ALL of the tests for random number generators and has a period
! of 2^144, is completely portable (gives bit identical results on all
! machines with at least 24-bit mantissas in the floating point
! representation).
!
! The algorithm is a combination of a Fibonacci sequence (with lags of 97
! and 33, and operation "subtraction plus one, modulo one") and an
! "arithmetic sequence" (using subtraction).
!
! On a Vax 11/780, this random number generator can produce a number in
! 13 microseconds.
!========================================================================
!
! PROGRAM TstRAN
! INTEGER IJ, KL, I
! Thee are the seeds needed to produce the test case results
! IJ = 1802
! KL = 9373
!
!
! Do the initialization
! call rmarin(ij,kl)
!
! Generate 20000 random numbers
! do 10 I = 1, 20000
! x = RANMAR()
!10 continue
!
! If the random number generator is working properly, the next six random
! numbers should be:
! 6533892.0 14220222.0 7275067.0
! 6172232.0 8354498.0 10633180.0
!
!
!
! write(6,20) (4096.0*4096.0*RANMAR(), I=1,6)
!20 format (3f12.1)
! end
!
subroutine RMARIN(IJ,KL)
! This is the initialization routine for the random number generator RANMAR()
! NOTE: The seed variables can have values between: 0 <= IJ <= 31328
! 0 <= KL <= 30081
!The random number sequences created by these two seeds are of sufficient
! length to complete an entire calculation with. For example, if sveral
! different groups are working on different parts of the same calculation,
! each group could be assigned its own IJ seed. This would leave each group
! with 30000 choices for the second seed. That is to say, this random
! number generator can create 900 million different subsequences -- with
! each subsequence having a length of approximately 10^30.
!
! Use IJ = 1802 & KL = 9373 to test the random number generator. The
! subroutine RANMAR should be used to generate 20000 random numbers.
! Then display the next six random numbers generated multiplied by 4096*4096
! If the random number generator is working properly, the random numbers
! should be:
! 6533892.0 14220222.0 7275067.0
! 6172232.0 8354498.0 10633180.0
double precision U(97), C, CD, CM, S, T
integer I97, J97,i,j,k,l,m
integer ij,kl
integer ii,jj
! INTEGER IRM(103)
common /RASET1/ U, C, CD, CM, I97, J97
if( IJ < 0 .or. IJ > 31328 .or. &
KL < 0 .or. KL > 30081 ) then
print '(A)', ' The first random number seed must have a value between 0 and 31328'
print '(A)',' The second seed must have a value between 0 and 30081'
call MpiStop('Error in RMARIN')
endif
I = mod(IJ/177, 177) + 2
J = mod(IJ , 177) + 2
K = mod(KL/169, 178) + 1
L = mod(KL, 169)
do II = 1, 97
S = 0.0
T = 0.5
do JJ = 1, 24
M = mod(mod(I*J, 179)*K, 179)
I = J
J = K
K = M
L = mod(53*L+1, 169)
if (mod(L*M, 64) >= 32) then
S = S + T
endif
T = 0.5 * T
3 continue
end do
U(II) = S
2 continue
end do
C = 362436.0 / 16777216.0
CD = 7654321.0 / 16777216.0
CM = 16777213.0 /16777216.0
I97 = 97
J97 = 33
end subroutine RMARIN
double precision function RANMAR()
! This is the random number generator proposed by George Marsaglia in
! Florida State University Report: FSU-SCRI-87-50
! It was slightly modified by F. James to produce an array of pseudorandom
! numbers.
double precision U(97), C, CD, CM
integer I97, J97
double precision uni
common /RASET1/ U, C, CD, CM, I97, J97
! INTEGER IVEC
UNI = U(I97) - U(J97)
if( UNI < 0.0 ) UNI = UNI + 1.0
U(I97) = UNI
I97 = I97 - 1
if(I97 == 0) I97 = 97
J97 = J97 - 1
if(J97 == 0) J97 = 97
C = C - CD
if( C < 0.d0 ) C = C + CM
UNI = UNI - C
if( UNI < 0.d0 ) UNI = UNI + 1.0 ! bug?
RANMAR = UNI
end function RANMAR
end module RandUtils