-
Notifications
You must be signed in to change notification settings - Fork 42
/
plot_postfit.py
292 lines (251 loc) · 16.1 KB
/
plot_postfit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
#! /usr/bin/env python
# Author: Izaak Neutelings (August 2020)
# Description: Simple plotting script for pico analysis tuples
# Instructions:
# ./plot_v10.py -y 2018 -c mutau
# ./plot_v10.py -y 2018 -c config/setup_mutau.yml
# ./plot_v10.py -y 2018 -c mutau -S baseline -V m_vis
#>>>>IMPORTANT!!
#>>>>Run with --serial option if using py3:
# ./plot_v10.py -y 2018 -c mutau --serial
from config.samples_v12 import *
from TauFW.Plotter.plot.string import filtervars
from TauFW.Plotter.plot.utils import LOG as PLOG
from TauFW.Plotter.plot.Plot import Plot, deletehist
import TauFW.Plotter.sample.SampleStyle as STYLE
import yaml
def plot(sampleset,setup,region,parallel=True,tag="",extratext="",outdir="plots",era="",
varfilter=None,selfilter=None,fraction=False,pdf=False):
"""Test plotting of SampleSet class for data/MC comparison."""
LOG.header("plot")
# Define the channel : mutau only supported for now
channel = setup["channel"]
selections = [ ]
# Check region and use the right TES value from
print("Region = %s" %(region))
if region in setup['regions']: # add extra regions on top of baseline
print(region)
if region == 'DM0' :
#channel = "mutau_TES0p914"
#channel = "mutau_TES0p930"
channel = "mutau_TES0p932"
#channel = "mutau_DM0_mt65"
# elif region == 'DM0_pt1' :
# #channel = "mutau_TES0p914"
# #channel = "mutau_TES0p930"
# channel = "mutau_TES0p892"
# elif region == 'DM0_pt2' :
# #channel = "mutau_TES0p914"
# #channel = "mutau_TES0p930"
# channel = "mutau_TES0p952"
elif region == 'DM1':
#channel = "mutau_TES0p980"
channel = "mutau_TES0p984"
#channel = "mutau_TES0p901"
#channel = "mutau_DM1_mt65"
elif region == 'DM10':
#channel = "mutau_TES0p998"
#channel = "mutau_TES0p972"
#channel = "mutau_TES1p012"
channel = "mutau_TES1p002"
#channel = "mutau_DM10_mt65"
elif region == 'DM11':
#channel = "mutau_TES1p012"
#channel = "mutau_TES1p008"
#channel = "mutau_TES1p018"
channel = "mutau_TES1p006"
#channel = "mutau_DM11_mt65"
else :
channel = setup["channel"]
print("Channel = %s" %(channel))
skwargs = setup['regions'][region].copy() # extra key-word options
assert 'definition' in skwargs
selstr = setup['baselineCuts']+" && "+skwargs.pop('definition')
selections.append(Sel(region,selstr,**skwargs))
# Define selection
selections = filtervars(selections,selfilter) # filter variable list with -S/--sel flag
# VARIABLES
variables = [
Var('pt_1', "Muon pt", 40, 0, 120, ctitle={'etau':"Electron pt",'tautau':"Leading tau_h pt",'mumu':"Leading muon pt",'emu':"Electron pt"},cbins={"nbtag\w*>":(40,0,200)}),
Var('pt_2', "tau_h pt", 40, 0, 120, ctitle={'tautau':"Subleading tau_h pt",'mumu':"Subleading muon pt",'emu':"Muon pt"},cbins={"nbtag\w*>":(40,0,200)}),
Var('eta_1', "Muon eta", 30, -3, 3, ctitle={'etau':"Electron eta",'tautau':"Leading tau_h eta",'mumu':"Leading muon eta",'emu':"Electron eta"},ymargin=1.7,pos='T',ncols=2),
Var('eta_2', "tau_h eta", 30, -3, 3, ctitle={'etau':"Electron eta",'tautau':"Subleading tau_h eta",'mumu':"Subleading muon eta",'emu':"Muon eta"},ymargin=1.7,pos='T',ncols=2),
Var('mt_1', "mt(mu,MET)", 40, 0, 200, ctitle={'etau':"mt(mu,MET)",'tautau':"mt(tau,MET)",'emu':"mt(e,MET)"},cbins={"nbtag\w*>":(50,0,250)}),
Var("jpt_1", 29, 10, 300, veto=[r"njets\w*==0"]),
Var("jpt_2", 29, 10, 300, veto=[r"njets\w*==0"]),
Var("jeta_1", 53, -5.4, 5.2, ymargin=1.6,pos='T',ncols=2,veto=[r"njets\w*==0"]),
Var("jeta_2", 53, -5.4, 5.2, ymargin=1.6,pos='T',ncols=2,veto=[r"njets\w*==0"]),
Var('npv', 40, 0, 80),
Var('njets', 8, 0, 8),
Var('nbtag', "Number of b jets (Medium, pt > 30 GeV)", 8, 0, 8),
Var('met', 50, 0, 150,cbins={"nbtag\w*>":(50,0,250)}),
#Var('genmet', 50, 0, 150, fname="$VAR_log", logyrange=4, data=False, logy=True, ncols=2, pos='TT'),
Var('pt_ll', "p_{T}(mutau_h)", 25, 0, 200, ctitle={'etau':"p_{T}(etau_h)",'tautau':"p_{T}(tau_htau_h)",'emu':"p_{T}(emu)"}),
Var('dR_ll', "DR(mutau_h)", 30, 0, 6.0, ctitle={'etau':"DR(etau_h)",'tautau':"DR(tau_htau_h)",'emu':"DR(emu)"}),
Var('deta_ll', "deta(mutau_h)", 20, 0, 6.0, ctitle={'etau':"deta(etau_h)",'tautau':"deta(tautau)",'emu':"deta(emu)"},logy=True,pos='TRR',cbins={"abs(deta_ll)<":(10,0,3)}), #, ymargin=8, logyrange=2.6
Var('dzeta', 56, -180, 100, pos='L;y=0.87',units='GeV',cbins={"nbtag\w*>":(35,-220,130)}),
]
if 'tau' in channel: # mutau, etau, tautau
loadmacro("python/macros/mapDecayModes.C") # for mapRecoDM
dmlabels = ["h^{#pm}","h^{#pm}h^{0}","h^{#pm}h^{#mp}h^{#pm}","h^{#pm}h^{#mp}h^{#pm}h^{0}","Other"]
variables += [
Var('m_vis', 40, 0, 200, fname="mvis",ctitle={'mumu':"m_mumu",'emu':"m_emu"},logy=False, cbins={"pt_\d>":(50,0,250),"nbtag\w*>":(60,0,300)},cpos={"pt_\d>[1678]0":'LL;y=0.88'}),
#Var('m_vis', 20, 0, 200, fname="mvis_coarse",ctitle={'mumu':"m_mumu",'emu':"m_emu"},logy=False, cbins={"pt_\d>":(25,0,250),"nbtag\w*>":(30,0,300)},cpos={"pt_\d>[1678]0":'LL;y=0.88'}),
# Var("m_2", 30, 0, 3, title="m_tau",veto=["njet","nbtag","dm_2==0"]),
# Var("dm_2", 14, 0, 14, fname="dm_2",title="Reconstructed tau_h decay mode",veto="dm_2==",position="TMC",ymargin=1.2),
#Var("mapRecoDM(dm_2)", 5, 0, 5, fname="dm_2_label",title="Reconstructed tau_h decay mode",veto="dm_2==",position="TT",labels=dmlabels,ymargin=1.2),
#Var("pzetavis", 50, 0, 200 ),
#Var('rawDeepTau2017v2p1VSjet_2', "rawDeepTau2017v2p1VSjet", 50, 0.00, 1, ymin = 1e3, ncols=2,pos='L;y=0.85',logy=True,ymargin=1.5,cbins={"VSjet_2>":(60,0.4,1)}),
# Var('rawDeepTau2017v2p1VSjet_2', "rawDeepTau2017v2p1VSjet", 60, 0.85, 1, ymin = 1e2, fname="$VAR_zoom",ncols=2,pos='L;y=0.85'),
# Var('rawDeepTau2017v2p1VSjet_2', "rawDeepTau2017v2p1VSjet", 35, 0.88, 1, ymin = 1e2, fname="$VAR_zoom1",ncols=2,pos='L;y=0.85'),
# Var('rawDeepTau2017v2p1VSjet_2', "rawDeepTau2017v2p1VSjet", 63, 0.88, 1, ymin = 1e2, fname="$VAR_zoom2",ncols=2,pos='L;y=0.85'),
# Var('rawDeepTau2017v2p1VSjet_2', "rawDeepTau2017v2p1VSjet", 125, 0.88, 1, ymin = 1e2, fname="$VAR_zoom3",ncols=2,pos='L;y=0.85'),
# Var('rawDeepTau2017v2p1VSe_2', "rawDeepTau2017v2p1VSe", 90, 0.10, 1, ymin = 1e2, fname="$VAR_zoom",ncols=2,logy=True,logyrange=4,pos='L;y=0.85'),
# Var('rawDeepTau2017v2p1VSmu_2', "rawDeepTau2017v2p1VSmu", 50, 0.80, 1, ymin = 1e1, fname="$VAR_zoom",ncols=2,logy=True,logyrange=5,pos='L;y=0.85'),
# # #Var('rawDeepTau2018v2p5VSjet_2', "rawDeepTau2018v2p5VSjet", 50, 0.00, 1, ymin = 1e3, ncols=2,pos='L;y=0.85',logy=True,ymargin=1.5,cbins={"VSjet_2>":(60,0.4,1)}),
# Var('rawDeepTau2018v2p5VSjet_2', "rawDeepTau2018v2p5VSjet", 20, 0.95, 1, ymin = 1e2, fname="$VAR_zoom",ncols=2,pos='L;y=0.85'),
# # Var('rawDeepTau2018v2p5VSjet_2', "rawDeepTau2018v2p5VSjet", 21, 0.96, 1, ymin = 1e2, fname="$VAR_zoom0",ncols=2,pos='L;y=0.85'),
# # Var('rawDeepTau2018v2p5VSjet_2', "rawDeepTau2018v2p5VSjet", 42, 0.96, 1, ymin = 1e2, fname="$VAR_zoom1",ncols=2,pos='L;y=0.85'),
# # Var('rawDeepTau2018v2p5VSjet_2', "rawDeepTau2018v2p5VSjet", 84, 0.96, 1, ymin = 1e2, fname="$VAR_zoom2",ncols=2,pos='L;y=0.85'),
# # Var('rawDeepTau2018v2p5VSjet_2', "rawDeepTau2018v2p5VSjet", 250, 0.96, 1, ymin = 1e2, fname="$VAR_zoom3",ncols=2,pos='L;y=0.85'),
# Var('rawDeepTau2018v2p5VSe_2', "rawDeepTau2018v2p5VSe", 80, 0.20, 1, ymin = 1e2, fname="$VAR_zoom",ncols=2,logy=True,logyrange=4,pos='L;y=0.85'),
# Var('rawDeepTau2018v2p5VSmu_2', "rawDeepTau2018v2p5VSmu", 25, 0.90, 1, ymin = 1e1, fname="$VAR_zoom",ncols=2,logy=True,logyrange=5,pos='L;y=0.85'),
# Var('rawDeepTau2018v2p5VSjet_2', "rawDeepTau2018v2p5VSjet", 50, 0.00, 1, ymin = 1e1, fname="$VAR_allRange", ncols=2,pos='L;y=0.85',logy=True,ymargin=1.5),
#Var('rawDeepTau2018v2p5VSe_2', "rawDeepTau2018v2p5VSe", 50, 0.00, 1, ymin = 1e3, fname="$VAR_allRange", ncols=2,pos='L;y=0.85',logy=True,ymargin=1.5),
#Var('rawDeepTau2018v2p5VSmu_2', "rawDeepTau2018v2p5VSmu", 50, 0.00, 1, ymin = 1e3, fname="$VAR_allRange", ncols=2,pos='L;y=0.85',logy=True,ymargin=1.5),
]
variables = filtervars(variables,varfilter) # filter variable list with -V/--var flag
# PLOT
outdir = ensuredir(repkey(outdir,CHANNEL=channel,ERA=era))
exts = ['png','pdf'] if pdf else ['png'] # extensions
for selection in selections:
print(">>> Selection %r: %r"%(selection.title,selection.selection))
# Mapping for region replacement
region_mapping = {'DM0': 'dm_2==0', 'DM1': 'dm_2==1', 'DM10': 'dm_2==10', 'DM11': 'dm_2==11'}
region_cut = region_mapping.get(region, region)
# Extract relevant parameters for modifying the sample
sampleAppend = ""
if region == "DM0":
dy_shape_val = 0.355279177427
elif region == "DM1":
dy_shape_val = -0.714294493198
elif region == "DM10":
dy_shape_val = 0.264388531446
elif region == "DM11":
dy_shape_val = -0.808251798153
else:
dy_shape_val = 1
dy_weight_ZTT = "(genmatch_2==5 ? 1+((zptweight+0.1*(zptweight-1))*%s ): 1)" %(dy_shape_val)
dy_weight_ZL = "(genmatch_2>0 && genmatch_2<5 ? 1+((zptweight+0.1*(zptweight-1))*%s): 1)" %(dy_shape_val)
dy_weight_ZJ = "(genmatch_2==0 ? 1+((zptweight+0.1*(zptweight-1))*%s ): 1)" %(dy_shape_val)
# Create a new sample set with systematic variations
# sampleset.gethists(obsset,selection,method=method,split=True,
# parallel=parallel,filter=filters,veto=vetoes,replaceweight=weightReplaced)
stacks = sampleset.getstack(variables,selection,method='QCD_OSSS',scale=1, parallel=parallel)
# sampleset.get("ZTT", unique=True,split=True,method='QCD_OSSS').setextraweight(dy_weight_ZTT)
# sampleset.get("ZL", unique=True,split=True,method='QCD_OSSS').setextraweight(dy_weight_ZL)
# sampleset.get("ZJ", unique=True,split=True,method='QCD_OSSS').setextraweight(dy_weight_ZJ)
print("sampleset = %s" %(sampleset))
# Applying SFs on specific processes -- do after splitting and renaming!
if "scaleFactors" in setup:
#print("scaleFactors")
for SF in setup["scaleFactors"]:
#print("Scale Factor =" , SF)
SFset = setup["scaleFactors"][SF]
print("Reweighting with SF -- %s -- for the following processes: %s"%(SF, SFset["processes"]))
for proc in SFset["processes"]:
#print("proc : %s" %(proc))
for cond in SFset["values"]:
#print("cond = ", cond)
#print("region_cut = ", region_cut)
if cond == region_cut :
weight = SFset["values"][cond]
print("Applying weight: %s to process %s" %(weight,proc))
for stack, variable in stacks.items():
for h in stack.hists:
if proc in h.GetName().split('_')[1]:
#print("hist name =" , h.GetName())
#print("hist name split('_')[1] =" , h.GetName().split('_')[1])
h.Scale(weight)
print("stacks = %s" %(stacks))
fname = "%s/$VAR_%s-%s-%s$TAG"%(outdir,channel.replace('mu','m').replace('tau','t'),selection.filename,era)
text = "%s: %s"%(channel.replace('mu',"#mu").replace('tau',"#tau_{h}"),selection.title)
if extratext:
text += ("" if '\n' in extratext[:3] else ", ") + extratext
#for stack, variable in stacks.iteritems():
for stack, variable in stacks.items(): # python 3
position = "" #variable.position or 'topright'
stack.draw(fraction=fraction)
stack.drawlegend() #position)
stack.drawtext(text)
stack.saveas(fname,ext=exts,tag=tag)
stack.close()
def main(args):
configs = args.configs
eras = args.eras
parallel = args.parallel
varfilter = args.varfilter
selfilter = args.selfilter
notauidsf = args.notauidsf
extratext = args.text
fraction = args.fraction
pdf = args.pdf
outdir = "plots/$ERA/$CHANNEL"
fname = "$PICODIR/$SAMPLE_$CHANNEL$TAG.root"
#fname = "/nfs/user/pmastra/DeepTau2p5/analysis/$ERA/$CHANNEL/$GROUP/$SAMPLE_$CHANNEL$TAG.root"
# LOOP over configs / channels
for config in configs:
if not config.endswith(".yml"): # config = channel name
config = "config/setup_%s.yml"%(config) # assume this file name pattern
print(">>> Using configuration file: %s"%config)
with open(config, 'r') as file:
setup = yaml.safe_load(file)
tag = setup.get('tag',"")+args.tag
for era in eras:
setera(era) # set era for plot style and lumi-xsec normalization
#addsfs = setup["samples"].get("addSFs",[]) #"getTauIDSF(dm_2,genmatch_2)"]
addsfs = [ ] #"getTauIDSF(dm_2,genmatch_2)"]
rmsfs = [ ] if (setup['channel']=='mumu' or not notauidsf) else ['idweight_2','ltfweight_2'] # remove tau ID SFs
split = ['DY','ST','TT']
sampleset = getsampleset(setup['channel'],era,fname=fname,rmsf=rmsfs,addsf=addsfs,split=split)
print("split = ", split)
print(">>>>>>>sampleset")
split_list = [["ZTT","genmatch_2==5"], ["ZL","genmatch_2>0 && genmatch_2<5"], ["ZJ","genmatch_2==0"],
["TTT","genmatch_2==5"], ["TTL","genmatch_2>0 && genmatch_2<5"], ["TTJ","genmatch_2==0"],
["ST","genmatch_2==5 && genmatch_2<5"],["STJ","genmatch_2<5"]]
sampleset.split(split_list)
for region in setup["regions"] :
plot(sampleset,setup,region,parallel=parallel,tag=tag,extratext=extratext,outdir=outdir,era=era,
varfilter=varfilter,selfilter=selfilter,fraction=fraction,pdf=pdf)
sampleset.close()
if __name__ == "__main__":
from argparse import ArgumentParser, RawTextHelpFormatter
eras = ['2016','2017','2018','UL2016_preVFP','UL2016_postVFP','UL2017','UL2018','2022_preEE','2022_postEE', '2023C']
description = """Simple plotting script for pico analysis tuples"""
parser = ArgumentParser(prog="plot",description=description,epilog="Good luck!")
parser.add_argument('-y', '--era', dest='eras', nargs='*', choices=eras, default=['2017'],
help="set era" )
parser.add_argument('-c', '--config', '--channel',
dest='configs', type=str, nargs='+', default=['config/setup_mutau.yml'], action='store',
help="config file(s) containing channel setup for samples and selections, default=%(default)r" )
parser.add_argument('-V', '--var', dest='varfilter', nargs='+',
help="only plot the variables passing this filter (glob patterns allowed)" )
parser.add_argument('-S', '--sel', dest='selfilter', nargs='+',
help="only plot the selection passing this filter (glob patterns allowed)" )
parser.add_argument('-s', '--serial', dest='parallel', action='store_false',
help="run Tree::MultiDraw serial instead of in parallel" )
parser.add_argument('-F', '--fraction',dest='fraction', action='store_true',
help="include fraction stack in ratio plot" )
parser.add_argument('-p', '--pdf', dest='pdf', action='store_true',
help="create pdf version of each plot" )
parser.add_argument('-r', '--nosf', dest='notauidsf', action='store_true',
help="remove DeepTau ID SF" )
parser.add_argument('-t', '--tag', default="", help="extra tag for output" )
parser.add_argument('-T', '--text', default="", help="extra text on plot" )
parser.add_argument('-v', '--verbose', dest='verbosity', type=int, nargs='?', const=1, default=0, action='store',
help="set verbosity" )
args = parser.parse_args()
LOG.verbosity = args.verbosity
PLOG.verbosity = args.verbosity
main(args)
print("\n>>> Done.")