Skip to content

Speed up autoplot.epi_archive #668

@brookslogan

Description

@brookslogan

With daily-time daily-version data and multiple locations, the wait time can be an annoyance, or it can brick some machines (maybe from memory usage expanding quadratically). Here's some progress toward a faster approach, at least if there aren't a bunch of revisions:

tibble(
  current = s05_smoothed_phrru_archive$DT %>%
    as.data.frame() %>%
    as_tibble(),
  preceding =
    s05_smoothed_phrru_archive$DT[
      unique(s05_smoothed_phrru_archive$DT[, key_colnames(s05_smoothed_phrru_archive), with = FALSE])[
      , time_value := epiprocess:::time_minus_n_steps(time_value, 1L,  s05_smoothed_phrru_archive$time_type)
      ],
      on = key_colnames(s05_smoothed_phrru_archive),
      roll = TRUE
    ] %>%
    as.data.frame() %>%
    as_tibble(),
  subsequent =
    copy(s05_smoothed_phrru_archive$DT)[
    , .version := version
    ][
      unique(s05_smoothed_phrru_archive$DT[, key_colnames(s05_smoothed_phrru_archive), with = FALSE])[
      , time_value := epiprocess:::time_plus_n_steps(time_value, 1L,  s05_smoothed_phrru_archive$time_type)
      ],
      on = key_colnames(s05_smoothed_phrru_archive),
      roll = TRUE
    ] %>%
    as.data.frame() %>%
    as_tibble()
) %>%
  filter(current$geo_value == "103") %>%
  mutate(current_lag = current$version - current$time_value) %>%
  # ggplot(aes(colour = current$version)) %>%
  ggplot(aes(colour = current_lag)) %>%
  `+`(geom_segment(aes(x = preceding$time_value, xend = current$time_value,
                       y = preceding$s05_smoothed, yend = current$s05_smoothed),
                   function(tbl) {
                     tbl %>% filter(!is.na(preceding$s05_smoothed))
                   })) %>%
  `+`(geom_segment(aes(x = current$time_value, xend = subsequent$time_value,
                       y = current$s05_smoothed, yend = subsequent$s05_smoothed),
                   function(tbl) {
                     tbl %>% filter(!is.na(subsequent$s05_smoothed), current$version != subsequent$.version)
                   })) %>%
  # `+`(scale_colour_viridis_c(trans = "date")) %>%
  `+`(scale_colour_viridis_c()) %>%
  {}

todo: faceting, isolated points

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions