-
Notifications
You must be signed in to change notification settings - Fork 1
/
t1_fitter.py
executable file
·514 lines (429 loc) · 21.8 KB
/
t1_fitter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
#!/usr/bin/env python
import numpy as np
np.seterr(all='ignore')
import contextlib, cStringIO, sys
@contextlib.contextmanager
def nostdout():
'''Prevent print to stdout, but if there was an error then catch it and
print the output before raising the error.'''
saved_stdout = sys.stdout
sys.stdout = cStringIO.StringIO()
try:
yield
except Exception:
saved_output = sys.stdout
sys.stdout = saved_stdout
print saved_output.getvalue()
raise
sys.stdout = saved_stdout
class T1_fitter(object):
def __init__(self, ti_vec, t1res=1, t1min=1, t1max=5000, fit_method='mag', ndel=4):
'''
ti_vec: vector of inversion times (len(ti_vec) == len(data)
t1res: resolution of t1 grid-search (in milliseconds)
t1min,t1max: min/max t1 for grid search (in milliseconds)
'''
self.fit_method = fit_method.lower()
self.t1min = t1min
self.t1max = t1max
self.t1res = t1res
self.ndel = ndel
if self.fit_method=='nlspr' or self.fit_method=='mag' or self.fit_method=='nls':
self.init_nls(ti_vec)
else:
self.ti_vec = np.array(ti_vec, dtype=np.float)
def init_nls(self, new_tis=None):
if new_tis is not None:
self.ti_vec = np.matrix(new_tis, dtype=np.float)
#else:
# self.ti_vec = np.matrix(self.ti_vec, dtype=np.float)
n = self.ti_vec.size
self.t1_vec = np.matrix(np.arange(self.t1min, self.t1max+self.t1res, self.t1res, dtype=np.float))
self.the_exp = np.exp(-self.ti_vec.T * np.matrix(1/self.t1_vec))
self.exp_sum = 1. / n * self.the_exp.sum(0).T
self.rho_norm_vec = np.sum(np.power(self.the_exp,2), 0).T - 1./n*np.power(self.the_exp.sum(0).T,2)
def __call__(self, d):
# Work-aropund for pickle's (and thus multiprocessing's) inability to map a class method.
# See http://stackoverflow.com/questions/1816958/cant-pickle-type-instancemethod-when-using-pythons-multiprocessing-pool-ma
if self.fit_method=='nlspr':
return self.t1_fit_nlspr(d)
elif self.fit_method=='mag':
return self.t1_fit_magnitude(d)
elif self.fit_method=='lm':
return self.t1_fit_lm(d)
elif self.fit_method=='ctk':
return self.t1_fit_with_ctk(d)
elif self.fit_method=='nls':
return self.t1_fit_nls(d)
def t1_fit_lm(self, data):
'''
Finds estimates of T1, a, and b using multi-dimensional
Levenberg-Marquardt algorithm. The model |c*(1-k*exp(-t/T1))|^2
is used: only one phase term (c), and data are magnitude-squared.
The residual is the rms error between the data and the fit.
INPUT:
data: the data to estimate from (1d vector)
RETURNS:
t1,k,c,residual
'''
from scipy.optimize import leastsq
# Make sure data is a 1d vector
data = np.array(data.ravel())
n = data.shape[0]
# Initialize fit values:
# T1 tarting value is hard-coded here (TODO: something better! Quick coarse grid search using nlspr?)
# k should be around 1 - cos(flip_angle) = 2
# |c| is set to the sqrt of the data at the longest TI
max_val = (np.abs(data[np.argmax(self.ti_vec)]))
x0 = np.array([900., 2., max_val])
predicted = lambda t1,k,c,ti: np.abs( c*(1 - k * np.exp(-ti/t1)) ) ** 2
residuals = lambda x,ti,y: y - np.sqrt(predicted(x[0], x[1], x[2], ti))
#err = lambda x,ti,y: np.sum(np.abs(residuals(x,ti,y)))
x,extra = leastsq(residuals, x0, args=(self.ti_vec.T,data))
# NOTE: I tried minimize with two different bounded search algorithms (SLSQP and L-BFGS-B), but neither worked very well.
# An unbounded leastsq fit with subsequent clipping of crazy fit values seems to be the fastest and most robust.
#x0_bounds = [[0.,5000.],[None,None],[0.,max_val*10.]]
#res = minimize(err, x0, args=(self.ti_vec.T,data), method='L-BFGS-B', bounds=x0_bounds, options={'disp':False, 'iprint':1, 'maxiter':100, 'ftol':1e-06})
t1 = x[0].clip(self.t1min, self.t1max)
k = x[1]
c = x[2]
# Compute the residual
y_hat = predicted(t1, k, c, self.ti_vec)
residual = 1. / np.sqrt(n) * np.sqrt(np.power(1 - y_hat / data.T, 2).sum())
return(t1,k,c,residual)
def t1_fit_nls(self, data):
'''
Finds estimates of T1, a, and b using a nonlinear least
squares approach. The model a+b*exp(-t/T1) is used.
The residual is the rms error between the data and the fit.
INPUT:
data: the data to estimate from (1d vector)
RETURNS:
t1,b,a,residual
Based on matlab code written by J. Barral, M. Etezadi-Amoli, E. Gudmundson, and N. Stikov, 2009
(c) Board of Trustees, Leland Stanford Junior University.
See their 2010 MRM paper here: http://www.ncbi.nlm.nih.gov/pubmed/20564597.
'''
# Make sure data is a column vector
data = np.matrix(data.ravel()).T
n = data.shape[0]
y_sum = data.sum()
rho_ty_vec = (data.T * self.the_exp).T - self.exp_sum * y_sum
# sum(theExp.^2, 1)' - 1/nlsS.N*(sum(theExp,1)').^2;
# The maximizing criterion
# [tmp,ind] = max( abs(rhoTyVec).^2./rhoNormVec );
ind = np.argmax(np.power(np.abs(rho_ty_vec), 2)/self.rho_norm_vec)
t1_hat = self.t1_vec[0,ind]
b_hat = rho_ty_vec[ind,0] / self.rho_norm_vec[ind,0]
a_hat = 1. / n * (y_sum - b_hat * self.the_exp[:,ind].sum())
# Compute the residual
model_val = a_hat + b_hat * np.exp(-self.ti_vec / t1_hat)
residual = 1. / np.sqrt(n) * np.sqrt(np.power(1 - model_val / data.T, 2).sum())
return(t1_hat,b_hat,a_hat,residual)
def t1_fit_nlspr(self, data):
'''
Finds estimates of T1, a, and b using a nonlinear least
squares approach. The model +-|aMag + bMag*exp(-t/T1)| is used.
The residual is the rms error between the data and the fit.
INPUT:
data: the data to estimate from (1d vector)
RETURNS:
t1,b,a,residual
Based on matlab code written by J. Barral, M. Etezadi-Amoli, E. Gudmundson, and N. Stikov, 2009
(c) Board of Trustees, Leland Stanford Junior University
'''
data = np.matrix(data.ravel()).T
n = data.shape[0]
t1 = np.zeros(n)
b = np.zeros(n)
a = np.zeros(n)
resid = np.zeros(n)
for i in range(n):
if i>0:
data[i-1] = -data[i-1]
(t1[i],b[i],a[i],resid[i]) = self.t1_fit_nls(data)
ind = np.argmin(resid);
return(t1[ind],b[ind],a[ind],resid[ind],ind)
def t1_fit_magnitude(self, data):
if self.ndel > 0 and self.ti_vec.size >= self.ndel + 4:
indx = data.argmin() # find the data point closest to the null
indx_to_del = range(indx - int(np.floor(self.ndel/2)) + 1, indx + int(np.ceil(self.ndel/2)) + 1)
if indx_to_del[0] >= 0 and indx_to_del[-1] < self.ti_vec.size:
tis = np.delete(self.ti_vec, indx_to_del)
data = np.delete(data, indx_to_del)
for n in range(indx_to_del[0]):
data[n] = -data[n]
else:
tis = self.ti_vec
for n in range(indx):
data[n] = -data[n]
fit = T1_fitter(tis, fit_method='mag', t1min=self.t1min, t1max=self.t1max, t1res=self.t1res, ndel=self.ndel)
(t1, b, a, res) = fit.t1_fit_nls(data)
else:
(t1, b, a, res, ind) = self.t1_fit_nlspr(data)
return (t1, b, a, res)
def t1_fit_with_ctk(self, data):
'''
Finds estimates of T1, a, b and slice crosstalk using multi-dimensional
Trust Region Reflective algorithm. The model |c*(1-k*exp(-t/T1))|
is used, and corrected for slice crosstalk effect on the magnetization.
The residual is the rms error between the data and the fit.
INPUT:
data: the data to estimate from (1d vector)
RETURNS:
t1,k,c,residual,crosstalk
'''
from scipy.optimize import least_squares
# Make sure data is a 1d vector
data = np.array(data.ravel())
n = data.shape[0]
# Initialize fit values:
# T1 tarting value is hard-coded here (TODO: something better! Quick coarse grid search using nlspr?)
# k should be around 1 - cos(flip_angle) = 2
# |c| is set to the sqrt of the data at the longest TI
max_val = np.max(data)
min_val = np.min(data)
x0 = np.array([900., 2., max_val, 0.1])
lb = [1., 1., min_val, 0.01]
ub = [5000., 2., max_val*2+1, 0.2]
residuals = lambda x,y: y - (self.t1_model_with_ctk(x[0], x[1], x[2], x[3]))
lsqresult = least_squares(residuals, x0, bounds=(lb,ub), loss='linear', args=(data,))
t1 = lsqresult.x[0].clip(self.t1min, self.t1max)
k = lsqresult.x[1]
c = lsqresult.x[2]
ctk = lsqresult.x[3]
# Compute the residual
predicted = self.t1_model_with_ctk(t1, k, c, ctk)
residual = 1. / np.sqrt(n) * np.sqrt(np.power(1 - predicted / data.T, 2).sum())
return(t1,k,c,residual,ctk)
def t1_model_with_ctk(self, t1, k, c, ctk):
'''
Compute the corrected magnetization using the T1 model
when considering the crosstalk between adjacent slices.
The magnetization is calculated using Bloch equation.
'''
Mz = c*(1 - k * np.exp(-self.ti_vec/t1))
TR = self.ti_vec[-1] + 2 * (self.ti_vec[1] - self.ti_vec[0]) - self.ti_vec[0]
half_intleave = int(self.ti_vec.shape[0]/2)
Mz_corrected = Mz
Mz_corrected[half_intleave] = Mz[half_intleave] * (1 - 0.5*ctk) + c*(1 - np.exp(-(TR/2)/t1)) * (0.5*ctk)
Mz_corrected[np.arange(half_intleave+1,self.ti_vec.shape[0])] = Mz[np.arange(half_intleave+1,self.ti_vec.shape[0])] * (1 - ctk) + c * (1 - np.exp(-(TR/2)/t1)) * ctk
return np.abs(Mz_corrected)
# Mz = np.abs( c*(1 - k * np.exp(-self.ti_vec/t1)) )
# half_intleave = int(self.ti_vec.shape[0]/2)
# crosstalk_correction = np.ones(self.ti_vec.shape[0]).T
# crosstalk_correction[half_intleave] = 1 - 0.5*ctk
# crosstalk_correction[np.arange(half_intleave+1,self.ti_vec.shape[0])] = 1 - ctk
# Mz_corrected = Mz * crosstalk_correction
# return Mz_corrected
def resample(img, pixdim=1.5, ref_file=None):
d = img.get_data().astype(np.float64)
# option to align to reference volume
if ref_file!=None:
# NOT WORKING! I don't think the dipy registration routine is applying the affine.
ref = nb.load(ref_file)
mn = nb.Nifti1Image(d.mean(axis=3), img.get_affine())
reg = registration.HistogramRegistration(mn, ref, interp='tri')
T = reg.optimize('rigid')
resamp_xform = np.dot(img.get_affine(), T.inv().as_affine())
else:
resamp_xform = img.get_affine()
try:
from dipy.align.aniso2iso import reslice
except:
from dipy.align.aniso2iso import resample as reslice
data,xform = reslice(d, resamp_xform, img.get_header().get_zooms()[:3], [pixdim]*3, order=5)
return nb.Nifti1Image(data, xform)
def unshuffle_slices(ni, mux, cal_vols=2, mux_cycle_num=2, ti=None, tr=None, ntis=None, keep=None):
if not ti:
description = ni._header.get('descrip')
vals = description.tostring().split(';')
ti = [int(v[3:]) for v in vals if 'ti' in v][0]
print 'Using TI=%0.2f from description.' % ti
else:
# ti might be a list, in which case we just need the first ti
try:
ti = ti[0]
except:
pass
print 'Using TI=%0.2f from argument list.' % ti
if not tr:
tr = ni._header.get_zooms()[3] * 1000.
if not ntis:
ntis = ni.shape[2] / mux
num_cal_trs = mux_cycle_num * mux
acq = np.mod(np.arange(ntis-1,-1,-1) - num_cal_trs, ntis)
sl_acq = np.zeros((ntis,ntis))
for sl in range(ntis):
sl_acq[sl,:] = np.roll(acq, np.mod(sl,2)*int(round(ntis/2.))+sl/2+1)
ti_acq = ti + sl_acq*tr/ntis
d = ni.get_data()
d = d[:,:,:,cal_vols:]
if d.shape[3]<ntis:
print 'WARNING: Too few volumes! zero-padding...'
sz = list(d.shape)
zero_pad = ntis - sz[3]
sz[3] = zero_pad
d = np.concatenate((d,np.zeros(sz,dtype=float)*np.nan), axis=3)
#d[...,0:2] = np.zeros((sz[0],sz[1],sz[2],2),dtype=float)*np.nan
else:
zero_pad = 0
tis = np.tile(ti_acq,(mux,int(np.ceil(d.shape[3]/float(ntis)))))
ntimepoints = d.shape[3]
d_sort = d[...,ntimepoints-ntis:ntimepoints]
tis = tis[:,ntimepoints-ntis:ntimepoints]
for sl in range(ntis*mux):
indx = np.argsort(tis[sl,:])
d_sort[:,:,sl,:] = d_sort[:,:,sl,indx]
ti_sort = np.sort(ti_acq[:,0])
# The last measurement is junk due to the slice-shuffling
d_sort = d_sort[...,0:ntis-1]
ti_sort = ti_sort[0:ntis-1]
if keep:
d_sort = d_sort[...,keep]
ti_sort = ti_sort[keep]
return d_sort,ti_sort
def main(infile, outbase, mask=None, err_method='lm', fwhm=0.0, t1res=1, t1min=1, t1max=5000, tr=[], ti=[], delete=4, unshuffle=None, keep=[], cal=2, mux_cycle=2, jobs=8, mux=3, pixdim=None, bet_frac=0.5):
import nibabel as nb
import os
import sys
from multiprocessing import Pool
outfiles = {f:outbase+'_'+f+'.nii.gz' for f in ['t1','a','b','res','unshuffled','ctk']}
ni = nb.load(infile[0])
if np.array(ti).any():
tis = ti
if len(tis) == 1 and tr != None and not unshuffle:
tis = ti + tr * np.arange(ni.shape[2]/mux - 1) / (ni.shape[2]/mux)
print 'TIs: ', tis.round(1).tolist()
elif not unshuffle:
raise RuntimeError('TIs must be provided on the command line for non-slice-shuffle data!')
if len(infile) > 1:
data = np.zeros(ni.shape[0:3]+(len(infile),))
for i in xrange(len(infile)):
ni = nb.load(infile[i])
data[...,i] = np.squeeze(ni.get_data())
else:
if unshuffle:
data,tis = unshuffle_slices(ni, mux, cal_vols=cal, mux_cycle_num=mux_cycle, ti=ti, tr=tr, keep=keep)
print 'Unshuffled slices, saved to %s. TIs: ' % outfiles['unshuffled'], tis.round(1).tolist()
ni = nb.Nifti1Image(data, ni.get_affine())
if pixdim != None:
print('Resampling data to %0.1fmm^3 ...' % pixdim)
ni = resample(ni, pixdim)
data = ni.get_data()
nb.save(ni, outfiles['unshuffled'])
else:
if pixdim != None:
ni = resample(ni, pixdim)
data = ni.get_data()
#data = np.abs(data - 100)
if fwhm>0:
import scipy.ndimage as ndimage
sd = np.array(ni._header.get_zooms()[0:3])/fwhm/2.355
print('Smoothing with %0.1f mm FWHM Gaussian (sigma=[%0.2f,%0.2f,%0.2f] voxels)...' % (tuple([fwhm]+sd.tolist())))
for i in xrange(data.shape[3]):
ndimage.gaussian_filter(data[...,i], sigma=sd, output=data[...,i])
if mask==None:
print('Computing mask...')
mn = np.nanmax(data, axis=3)
try:
#from dipy.segment.mask import median_otsu
#masked_mn, mask = median_otsu(mn, 4, 4)
from nipype.interfaces import fsl
fsl.BET(in_file=infile[0], frac=bet_frac, mask=True, no_output=False, out_file=outbase+'_brain').run()
mask = nb.load(outbase+'_brain_mask.nii.gz').get_data()>=0.5
except:
print('WARNING: failed to compute a mask. Fitting all voxels.')
mask = np.ones(mn.shape, dtype=bool)
elif mask.lower()=='none':
mask = np.ones((data.shape[0],data.shape[1],data.shape[2]), dtype=bool)
else:
mask_ni = nb.load(mask)
if pixdim != None:
print('Resampling mask to %0.1fmm^3 ...' % pixdim)
mask_ni = resample(mask_ni, pixdim)
mask = mask_ni.get_data()>=0.5
#mask = np.ones_like(data[...,0]) # only when fsl.BET fails
brain_inds = np.argwhere(mask) # for testing on some voxels: [0:10000,:]
t1 = np.zeros(mask.shape, dtype=np.float)
a = np.zeros(mask.shape, dtype=np.float)
b = np.zeros(mask.shape, dtype=np.float)
res = np.zeros(mask.shape, dtype=np.float)
if err_method == 'ctk':
ctk = np.zeros(mask.shape, dtype=np.float)
print('Fitting T1 model...')
fit = T1_fitter(tis, t1res, t1min, t1max, err_method, delete)
update_step = 20
update_interval = round(brain_inds.shape[0]/float(update_step))
if jobs<2:
for i,c in enumerate(brain_inds):
d = data[c[0],c[1],c[2],:]
nans = np.isnan(d)
if np.any(nans):
nn = nans==False
fit_nan = T1_fitter(tis[nn], t1res, t1min, t1max, err_method, delete)
t1[c[0],c[1],c[2]],b[c[0],c[1],c[2]],a[c[0],c[1],c[2]],res[c[0],c[1],c[2]] = fit_nan(d[nn])
else:
t1[c[0],c[1],c[2]],b[c[0],c[1],c[2]],a[c[0],c[1],c[2]],res[c[0],c[1],c[2]] = fit(d)
if np.mod(i, update_interval)==0:
progress = int(update_step*i/brain_inds.shape[0]+0.5)
sys.stdout.write('\r[{0}{1}] {2}%'.format('#'*progress, ' '*(update_step-progress), progress*5))
sys.stdout.flush()
print(' finished.')
else:
p = Pool(jobs)
work = [data[c[0],c[1],c[2],:] for c in brain_inds]
workers = p.map_async(fit, work)
num_updates = 0
while not workers.ready():
i = brain_inds.shape[0] - workers._number_left * workers._chunksize
if i >= update_interval*num_updates:
num_updates += 1
if num_updates<=update_step:
sys.stdout.write('\r[{0}{1}] {2}%'.format('#'*num_updates, ' '*(update_step-num_updates), num_updates*5))
sys.stdout.flush()
out = workers.get()
for i,c in enumerate(brain_inds):
t1[c[0],c[1],c[2]] = out[i][0]
b[c[0],c[1],c[2]] = out[i][1]
a[c[0],c[1],c[2]] = out[i][2]
res[c[0],c[1],c[2]] = out[i][3]
if err_method == 'ctk':
ctk[c[0],c[1],c[2]] = out[i][4]
print(' finished.')
ni_out = nb.Nifti1Image(t1, ni.get_affine())
nb.save(ni_out, outfiles['t1'])
ni_out = nb.Nifti1Image(a, ni.get_affine())
nb.save(ni_out, outfiles['a'])
ni_out = nb.Nifti1Image(b, ni.get_affine())
nb.save(ni_out, outfiles['b'])
ni_out = nb.Nifti1Image(res, ni.get_affine())
nb.save(ni_out, outfiles['res'])
if err_method == 'ctk':
ni_out = nb.Nifti1Image(ctk, ni.get_affine())
nb.save(ni_out, outfiles['ctk'])
if __name__ == '__main__':
import argparse
arg_parser = argparse.ArgumentParser()
arg_parser.description = ('Fit T1 using a grid-search.\n\n')
arg_parser.add_argument('infile', nargs='+', help='path to nifti file with multiple inversion times')
arg_parser.add_argument('-o', '--outbase', default='./t1fitter', help='path and base filename to output files')
arg_parser.add_argument('-m', '--mask', help='Mask file (nifti) to use. If not provided, a simple mask will be computed.')
arg_parser.add_argument('-e', '--err_method', default='lm', help='Error minimization method. Current options are "nlspr"-nonlinear least square with polarity restoration, "mag"-fitting magnitude images without noisy data points, "lm"-Levenberg-Marquardt NLS, "ctk"-a model trying to correct for slice crosstalk effects. Default is lm.')
arg_parser.add_argument('-f', '--fwhm', type=float, default=0.0, help='FWHM of the smoothing kernel (default=0.0mm = no smoothing)')
arg_parser.add_argument('-r', '--t1res', type=float, default=1.0, help='T1 grid-search resolution, in ms (default=1.0ms)')
arg_parser.add_argument('-n', '--t1min', type=float, default=1.0, help='Minimum T1 to allow (default=1.0ms)')
arg_parser.add_argument('-x', '--t1max', type=float, default=5000.0, help='Maximum T1 to allow (default=5000.0ms)')
arg_parser.add_argument('--tr', type=float, default=[], help='TR of the slice-shuffled scan (in ms).')
arg_parser.add_argument('-t', '--ti', type=float, default=[], nargs='+', help='List of inversion times. Must match order and size of input file''s 4th dim. e.g., -t 50.0 400 1200 2400. For slice-shuffed data, you just need to provide the first TI.')
arg_parser.add_argument('-d', '--delete', type=int, default=4, help='Number of TIs to exclude for fitting T1 (default=4)')
arg_parser.add_argument('-u', '--unshuffle', action='store_true', help='Unshuffle slices')
arg_parser.add_argument('-k', '--keep', type=float, default=[], nargs='+', help='indices of the inversion times to use for fitting (default=all)')
arg_parser.add_argument('-c', '--cal', type=int, default=2, help='Number of calibration volumes for slice-shuffed data (default=2)')
arg_parser.add_argument('--mux_cycle', type=int, default=2, help='Number of mux calibration cycles (default=2)')
arg_parser.add_argument('-j', '--jobs', type=int, default=8, help='Number of processors to run for multiprocessing (default=8)')
arg_parser.add_argument('-s', '--mux', type=int, default=3, help='Number of SMS bands (mux factor) for slice-shuffeld data (default=3)')
arg_parser.add_argument('-p', '--pixdim', type=float, default=None, help='Resample to a different voxel size (default is to retain input voxel size)')
arg_parser.add_argument('-b', '--bet_frac', type=float, default=0.5, help='bet fraction for FSL''s bet function (default is 0.5)')
args = arg_parser.parse_args()
main(args.infile, args.outbase, args.mask, args.err_method, args.fwhm, args.t1res, args.t1min, args.t1max, args.tr, args.ti, args.delete, args.unshuffle, args.keep, args.cal, args.mux_cycle, args.jobs, args.mux, args.pixdim, args.bet_frac)