forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
wmt_utils.py
435 lines (375 loc) · 16 KB
/
wmt_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
# Copyright 2015 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Utilities for downloading data from WMT, tokenizing, vocabularies."""
import gzip
import os
import re
import tarfile
from six.moves import urllib
import tensorflow as tf
# Special vocabulary symbols - we always put them at the start.
_PAD = b"_PAD"
_GO = b"_GO"
_EOS = b"_EOS"
_UNK = b"_CHAR_UNK"
_SPACE = b"_SPACE"
_START_VOCAB = [_PAD, _GO, _EOS, _UNK, _SPACE]
PAD_ID = 0
GO_ID = 1
EOS_ID = 2
UNK_ID = 3
SPACE_ID = 4
# Regular expressions used to tokenize.
_CHAR_MARKER = "_CHAR_"
_CHAR_MARKER_LEN = len(_CHAR_MARKER)
_SPEC_CHARS = "" + chr(226) + chr(153) + chr(128)
_PUNCTUATION = "][.,!?\"':;%$#@&*+}{|><=/^~)(_`,0123456789" + _SPEC_CHARS + "-"
_WORD_SPLIT = re.compile(b"([" + _PUNCTUATION + "])")
_OLD_WORD_SPLIT = re.compile(b"([.,!?\"':;)(])")
_DIGIT_RE = re.compile(br"\d")
# URLs for WMT data.
_WMT_ENFR_TRAIN_URL = "http://www.statmt.org/wmt10/training-giga-fren.tar"
_WMT_ENFR_DEV_URL = "http://www.statmt.org/wmt15/dev-v2.tgz"
def maybe_download(directory, filename, url):
"""Download filename from url unless it's already in directory."""
if not tf.gfile.Exists(directory):
print "Creating directory %s" % directory
os.mkdir(directory)
filepath = os.path.join(directory, filename)
if not tf.gfile.Exists(filepath):
print "Downloading %s to %s" % (url, filepath)
filepath, _ = urllib.request.urlretrieve(url, filepath)
statinfo = os.stat(filepath)
print "Successfully downloaded", filename, statinfo.st_size, "bytes"
return filepath
def gunzip_file(gz_path, new_path):
"""Unzips from gz_path into new_path."""
print "Unpacking %s to %s" % (gz_path, new_path)
with gzip.open(gz_path, "rb") as gz_file:
with open(new_path, "wb") as new_file:
for line in gz_file:
new_file.write(line)
def get_wmt_enfr_train_set(directory):
"""Download the WMT en-fr training corpus to directory unless it's there."""
train_path = os.path.join(directory, "giga-fren.release2.fixed")
if not (tf.gfile.Exists(train_path +".fr") and
tf.gfile.Exists(train_path +".en")):
corpus_file = maybe_download(directory, "training-giga-fren.tar",
_WMT_ENFR_TRAIN_URL)
print "Extracting tar file %s" % corpus_file
with tarfile.open(corpus_file, "r") as corpus_tar:
corpus_tar.extractall(directory)
gunzip_file(train_path + ".fr.gz", train_path + ".fr")
gunzip_file(train_path + ".en.gz", train_path + ".en")
return train_path
def get_wmt_enfr_dev_set(directory):
"""Download the WMT en-fr training corpus to directory unless it's there."""
dev_name = "newstest2013"
dev_path = os.path.join(directory, dev_name)
if not (tf.gfile.Exists(dev_path + ".fr") and
tf.gfile.Exists(dev_path + ".en")):
dev_file = maybe_download(directory, "dev-v2.tgz", _WMT_ENFR_DEV_URL)
print "Extracting tgz file %s" % dev_file
with tarfile.open(dev_file, "r:gz") as dev_tar:
fr_dev_file = dev_tar.getmember("dev/" + dev_name + ".fr")
en_dev_file = dev_tar.getmember("dev/" + dev_name + ".en")
fr_dev_file.name = dev_name + ".fr" # Extract without "dev/" prefix.
en_dev_file.name = dev_name + ".en"
dev_tar.extract(fr_dev_file, directory)
dev_tar.extract(en_dev_file, directory)
return dev_path
def is_char(token):
if len(token) > _CHAR_MARKER_LEN:
if token[:_CHAR_MARKER_LEN] == _CHAR_MARKER:
return True
return False
def basic_detokenizer(tokens):
"""Reverse the process of the basic tokenizer below."""
result = []
previous_nospace = True
for t in tokens:
if is_char(t):
result.append(t[_CHAR_MARKER_LEN:])
previous_nospace = True
elif t == _SPACE:
result.append(" ")
previous_nospace = True
elif previous_nospace:
result.append(t)
previous_nospace = False
else:
result.extend([" ", t])
previous_nospace = False
return "".join(result)
old_style = False
def basic_tokenizer(sentence):
"""Very basic tokenizer: split the sentence into a list of tokens."""
words = []
if old_style:
for space_separated_fragment in sentence.strip().split():
words.extend(re.split(_OLD_WORD_SPLIT, space_separated_fragment))
return [w for w in words if w]
for space_separated_fragment in sentence.strip().split():
tokens = [t for t in re.split(_WORD_SPLIT, space_separated_fragment) if t]
first_is_char = False
for i, t in enumerate(tokens):
if len(t) == 1 and t in _PUNCTUATION:
tokens[i] = _CHAR_MARKER + t
if i == 0:
first_is_char = True
if words and words[-1] != _SPACE and (first_is_char or is_char(words[-1])):
tokens = [_SPACE] + tokens
spaced_tokens = []
for i, tok in enumerate(tokens):
spaced_tokens.append(tokens[i])
if i < len(tokens) - 1:
if tok != _SPACE and not (is_char(tok) or is_char(tokens[i+1])):
spaced_tokens.append(_SPACE)
words.extend(spaced_tokens)
return words
def space_tokenizer(sentence):
return sentence.strip().split()
def is_pos_tag(token):
"""Check if token is a part-of-speech tag."""
return(token in ["CC", "CD", "DT", "EX", "FW", "IN", "JJ", "JJR",
"JJS", "LS", "MD", "NN", "NNS", "NNP", "NNPS", "PDT",
"POS", "PRP", "PRP$", "RB", "RBR", "RBS", "RP", "SYM", "TO",
"UH", "VB", "VBD", "VBG", "VBN", "VBP", "VBZ", "WDT", "WP",
"WP$", "WRB", ".", ",", ":", ")", "-LRB-", "(", "-RRB-",
"HYPH", "$", "``", "''", "ADD", "AFX", "QTR", "BES", "-DFL-",
"GW", "HVS", "NFP"])
def parse_constraints(inpt, res):
ntags = len(res)
nwords = len(inpt)
npostags = len([x for x in res if is_pos_tag(x)])
nclose = len([x for x in res if x[0] == "/"])
nopen = ntags - nclose - npostags
return (abs(npostags - nwords), abs(nclose - nopen))
def create_vocabulary(vocabulary_path, data_path, max_vocabulary_size,
tokenizer=None, normalize_digits=False):
"""Create vocabulary file (if it does not exist yet) from data file.
Data file is assumed to contain one sentence per line. Each sentence is
tokenized and digits are normalized (if normalize_digits is set).
Vocabulary contains the most-frequent tokens up to max_vocabulary_size.
We write it to vocabulary_path in a one-token-per-line format, so that later
token in the first line gets id=0, second line gets id=1, and so on.
Args:
vocabulary_path: path where the vocabulary will be created.
data_path: data file that will be used to create vocabulary.
max_vocabulary_size: limit on the size of the created vocabulary.
tokenizer: a function to use to tokenize each data sentence;
if None, basic_tokenizer will be used.
normalize_digits: Boolean; if true, all digits are replaced by 0s.
"""
if not tf.gfile.Exists(vocabulary_path):
print "Creating vocabulary %s from data %s" % (vocabulary_path, data_path)
vocab, chars = {}, {}
for c in _PUNCTUATION:
chars[c] = 1
# Read French file.
with tf.gfile.GFile(data_path + ".fr", mode="rb") as f:
counter = 0
for line_in in f:
line = " ".join(line_in.split())
counter += 1
if counter % 100000 == 0:
print " processing fr line %d" % counter
for c in line:
if c in chars:
chars[c] += 1
else:
chars[c] = 1
tokens = tokenizer(line) if tokenizer else basic_tokenizer(line)
tokens = [t for t in tokens if not is_char(t) and t != _SPACE]
for w in tokens:
word = re.sub(_DIGIT_RE, b"0", w) if normalize_digits else w
if word in vocab:
vocab[word] += 1000000000 # We want target words first.
else:
vocab[word] = 1000000000
# Read English file.
with tf.gfile.GFile(data_path + ".en", mode="rb") as f:
counter = 0
for line_in in f:
line = " ".join(line_in.split())
counter += 1
if counter % 100000 == 0:
print " processing en line %d" % counter
for c in line:
if c in chars:
chars[c] += 1
else:
chars[c] = 1
tokens = tokenizer(line) if tokenizer else basic_tokenizer(line)
tokens = [t for t in tokens if not is_char(t) and t != _SPACE]
for w in tokens:
word = re.sub(_DIGIT_RE, b"0", w) if normalize_digits else w
if word in vocab:
vocab[word] += 1
else:
vocab[word] = 1
sorted_vocab = sorted(vocab, key=vocab.get, reverse=True)
sorted_chars = sorted(chars, key=vocab.get, reverse=True)
sorted_chars = [_CHAR_MARKER + c for c in sorted_chars]
vocab_list = _START_VOCAB + sorted_chars + sorted_vocab
if tokenizer:
vocab_list = _START_VOCAB + sorted_vocab
if len(vocab_list) > max_vocabulary_size:
vocab_list = vocab_list[:max_vocabulary_size]
with tf.gfile.GFile(vocabulary_path, mode="wb") as vocab_file:
for w in vocab_list:
vocab_file.write(w + b"\n")
def initialize_vocabulary(vocabulary_path):
"""Initialize vocabulary from file.
We assume the vocabulary is stored one-item-per-line, so a file:
dog
cat
will result in a vocabulary {"dog": 0, "cat": 1}, and this function will
also return the reversed-vocabulary ["dog", "cat"].
Args:
vocabulary_path: path to the file containing the vocabulary.
Returns:
a pair: the vocabulary (a dictionary mapping string to integers), and
the reversed vocabulary (a list, which reverses the vocabulary mapping).
Raises:
ValueError: if the provided vocabulary_path does not exist.
"""
if tf.gfile.Exists(vocabulary_path):
rev_vocab = []
with tf.gfile.GFile(vocabulary_path, mode="rb") as f:
rev_vocab.extend(f.readlines())
rev_vocab = [line.strip() for line in rev_vocab]
vocab = dict([(x, y) for (y, x) in enumerate(rev_vocab)])
return vocab, rev_vocab
else:
raise ValueError("Vocabulary file %s not found.", vocabulary_path)
def sentence_to_token_ids_raw(sentence, vocabulary,
tokenizer=None, normalize_digits=old_style):
"""Convert a string to list of integers representing token-ids.
For example, a sentence "I have a dog" may become tokenized into
["I", "have", "a", "dog"] and with vocabulary {"I": 1, "have": 2,
"a": 4, "dog": 7"} this function will return [1, 2, 4, 7].
Args:
sentence: the sentence in bytes format to convert to token-ids.
vocabulary: a dictionary mapping tokens to integers.
tokenizer: a function to use to tokenize each sentence;
if None, basic_tokenizer will be used.
normalize_digits: Boolean; if true, all digits are replaced by 0s.
Returns:
a list of integers, the token-ids for the sentence.
"""
if tokenizer:
words = tokenizer(sentence)
else:
words = basic_tokenizer(sentence)
result = []
for w in words:
if normalize_digits:
w = re.sub(_DIGIT_RE, b"0", w)
if w in vocabulary:
result.append(vocabulary[w])
else:
if tokenizer:
result.append(UNK_ID)
else:
result.append(SPACE_ID)
for c in w:
result.append(vocabulary.get(_CHAR_MARKER + c, UNK_ID))
result.append(SPACE_ID)
while result and result[0] == SPACE_ID:
result = result[1:]
while result and result[-1] == SPACE_ID:
result = result[:-1]
return result
def sentence_to_token_ids(sentence, vocabulary,
tokenizer=None, normalize_digits=old_style):
"""Convert a string to list of integers representing token-ids, tab=0."""
tab_parts = sentence.strip().split("\t")
toks = [sentence_to_token_ids_raw(t, vocabulary, tokenizer, normalize_digits)
for t in tab_parts]
res = []
for t in toks:
res.extend(t)
res.append(0)
return res[:-1]
def data_to_token_ids(data_path, target_path, vocabulary_path,
tokenizer=None, normalize_digits=False):
"""Tokenize data file and turn into token-ids using given vocabulary file.
This function loads data line-by-line from data_path, calls the above
sentence_to_token_ids, and saves the result to target_path. See comment
for sentence_to_token_ids on the details of token-ids format.
Args:
data_path: path to the data file in one-sentence-per-line format.
target_path: path where the file with token-ids will be created.
vocabulary_path: path to the vocabulary file.
tokenizer: a function to use to tokenize each sentence;
if None, basic_tokenizer will be used.
normalize_digits: Boolean; if true, all digits are replaced by 0s.
"""
if not tf.gfile.Exists(target_path):
print "Tokenizing data in %s" % data_path
vocab, _ = initialize_vocabulary(vocabulary_path)
with tf.gfile.GFile(data_path, mode="rb") as data_file:
with tf.gfile.GFile(target_path, mode="w") as tokens_file:
counter = 0
for line in data_file:
counter += 1
if counter % 100000 == 0:
print " tokenizing line %d" % counter
token_ids = sentence_to_token_ids(line, vocab, tokenizer,
normalize_digits)
tokens_file.write(" ".join([str(tok) for tok in token_ids]) + "\n")
def prepare_wmt_data(data_dir, vocabulary_size,
tokenizer=None, normalize_digits=False):
"""Get WMT data into data_dir, create vocabularies and tokenize data.
Args:
data_dir: directory in which the data sets will be stored.
vocabulary_size: size of the joint vocabulary to create and use.
tokenizer: a function to use to tokenize each data sentence;
if None, basic_tokenizer will be used.
normalize_digits: Boolean; if true, all digits are replaced by 0s.
Returns:
A tuple of 6 elements:
(1) path to the token-ids for English training data-set,
(2) path to the token-ids for French training data-set,
(3) path to the token-ids for English development data-set,
(4) path to the token-ids for French development data-set,
(5) path to the vocabulary file,
(6) path to the vocabulary file (for compatibility with non-joint vocab).
"""
# Get wmt data to the specified directory.
train_path = get_wmt_enfr_train_set(data_dir)
dev_path = get_wmt_enfr_dev_set(data_dir)
# Create vocabularies of the appropriate sizes.
vocab_path = os.path.join(data_dir, "vocab%d.txt" % vocabulary_size)
create_vocabulary(vocab_path, train_path, vocabulary_size,
tokenizer=tokenizer, normalize_digits=normalize_digits)
# Create token ids for the training data.
fr_train_ids_path = train_path + (".ids%d.fr" % vocabulary_size)
en_train_ids_path = train_path + (".ids%d.en" % vocabulary_size)
data_to_token_ids(train_path + ".fr", fr_train_ids_path, vocab_path,
tokenizer=tokenizer, normalize_digits=normalize_digits)
data_to_token_ids(train_path + ".en", en_train_ids_path, vocab_path,
tokenizer=tokenizer, normalize_digits=normalize_digits)
# Create token ids for the development data.
fr_dev_ids_path = dev_path + (".ids%d.fr" % vocabulary_size)
en_dev_ids_path = dev_path + (".ids%d.en" % vocabulary_size)
data_to_token_ids(dev_path + ".fr", fr_dev_ids_path, vocab_path,
tokenizer=tokenizer, normalize_digits=normalize_digits)
data_to_token_ids(dev_path + ".en", en_dev_ids_path, vocab_path,
tokenizer=tokenizer, normalize_digits=normalize_digits)
return (en_train_ids_path, fr_train_ids_path,
en_dev_ids_path, fr_dev_ids_path,
vocab_path, vocab_path)