forked from NVIDIA/cutlass
-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathpredicated_tile_iterator.h
1887 lines (1554 loc) · 61.5 KB
/
predicated_tile_iterator.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief Templates implementing loading of tiles from pitch-linear rank=2 tensors.
This iterator uses masks to guard out-of-bounds accesses. The first tile this
iterator visits maybe partial, then the remaining tiles are complete. So, we
only need to compute the predicates twice, once before the first tile and
once for the remaining full tiles which can share the same predicates.
A precomputed "Params" object minimizes the amount of state that must be stored in registers,
and integer addition is used to advance the pointer through memory.
*/
#pragma once
#include "cutlass/arch/memory.h"
#include "cutlass/transform/threadblock/predicated_tile_access_iterator.h"
////////////////////////////////////////////////////////////////////////////////
namespace cutlass {
namespace transform {
namespace threadblock {
////////////////////////////////////////////////////////////////////////////////
/// PredicatedTileIterator
///
/// Satisfies: ForwardTileIteratorConcept |
/// ReadableContiguousTileIteratorConcept |
/// WriteableContiguousTileIteratorConcept |
/// MaskedTileIteratorConcept
///
/// Regular tile iterator using a precomputed control structure to minimize register liveness
/// and integer arithmetic.
///
/// Layout is assumed to be invariant at the time the precomputed "Params" object is constructed.
///
/// Base pointer and tensor extents may be specified at the time the iterator is constructed.
/// Subsequently, they are assumed to be immutable.
///
/// Adding a logical coordinate offset may be performed at the time the iterator is constructed.
/// Subsequent additions to logical coordinate offset may be performed but are relatively expensive.
///
/// Visitation order is intended to first visit a "residual" tile that may be partially full in
/// both the advance dimension and the steady-state dimension. This is assumed to be the last
/// tile in the iteration sequence. Advancing an iterator that has just been constructed moves to
/// the first tile that is full in the advance dimension and recomputes predicates. Subsequent
/// accesses may be performed without updating internal predicates and are efficient in terms of
/// live register state and pointer arithmetic instructions.
///
/// To be efficient, this assumes the iterator will be dereferenced and advanced at least once
/// outside any looping structure to minimize integer arithmetic.
///
/// Acceses out of bounds are safe so long as `clear_mask()` is called prior to dereferencing
/// the iterator.
///
///
/// Example:
///
/// An efficient pipeline structure may be constructed as follows:
///
// template <typename Iterator>
// __global__ void kernel(
// typename Iterator::Params params,
// typename Iterator::Element *ptr,
// TensorCoord extent) {
//
// typename Iterator::Fragment fragment;
//
// TensorCoord threadblock_offset(0, 0);
//
// Iterator iter(params, ptr, extent, threadIdx.x, threadblock_offsets);
//
//
// fragment = *iter; // load "residue" tile first
// ++iter; // advance to first "steady state" tile and update internal masks
//
//
// #pragma unroll
// for (int i = Remaining - 1; i >= 0; --i) {
//
// f(fragment);
//
// if (!i) {
// iter.clear_mask(); // light-weight operation to clear masks - subsequent loads become NO-OPs.
// }
//
// fragment = *iter; // load tile during "steady state" phase
// ++iter; // advance to next tile - lightweight due to steady-state masks
// }
// }
//
// void host(TensorView<Element, 2, layout::PitchLinear> view) {
//
// using Iterator = transform::threadblock::PredicatedTileIterator;
//
// typename Iterator::Params params(view.layout());
//
// kernel<Iterator>(params, view.data());
// }
///
///
template <
typename Shape,
typename Element,
typename Layout,
int AdvanceRank,
typename ThreadMap,
int AccessSize = ThreadMap::kElementsPerAccess,
bool Gather = false,
typename PermuteLayout = layout::NoPermute
>
class PredicatedTileIterator;
////////////////////////////////////////////////////////////////////////////////
/// Specialization of PredicatedTileIterator for pitch-linear data.
///
/// Satisfies: ForwardTileIteratorConcept |
/// ReadableContiguousTileIteratorConcept |
/// WriteableContiguousTileIteratorConcept |
/// MaskedTileIteratorConcept
///
template <typename Shape_, typename Element_, int AdvanceRank,
typename ThreadMap_, int AccessSize, bool Gather, typename PermuteLayout>
class PredicatedTileIterator<Shape_, Element_, layout::PitchLinear, AdvanceRank,
ThreadMap_, AccessSize, Gather, PermuteLayout> {
public:
static_assert(
AdvanceRank == 0 || AdvanceRank == 1,
"Specialization for pitch-linear iterator may advance along the "
"contiguous(rank=0) or strided(rank=1) dimension.");
using Shape = Shape_;
using Element = Element_;
using Layout = layout::PitchLinear;
static int const kAdvanceRank = AdvanceRank;
using ThreadMap = ThreadMap_;
using Index = typename Layout::Index;
using LongIndex = typename Layout::LongIndex;
using TensorRef = TensorRef<Element, Layout>;
using TensorView = TensorView<Element, Layout>;
using TensorCoord = typename Layout::TensorCoord;
using Pointer = Element *;
using NonConstPointer = typename platform::remove_const<Element>::type *;
/// Type used for internal memory accesses
using AccessType = AlignedArray<Element, AccessSize, (AccessSize * sizeof_bits<Element>::value / 8)>;
/// Underlying iterator to compute the addresses
using TileAccessIterator =
PredicatedTileAccessIterator<Shape, Element, Layout, kAdvanceRank,
ThreadMap, AccessType, Gather, PermuteLayout>;
static int const kAccessesPerVector = TileAccessIterator::kAccessesPerVector;
/// Fragment object to be loaded or stored
using Fragment = cutlass::Array<Element, ThreadMap::Iterations::kCount *
ThreadMap::kElementsPerAccess>;
/// Predicate vector stores mask to guard accesses
using Mask = typename TileAccessIterator::Mask;
/// Parameters object is precomputed state and is host-constructible
class Params {
public:
using Base = typename TileAccessIterator::Params::Base;
friend PredicatedTileIterator;
private:
/// Parameters object
typename TileAccessIterator::Params params_;
public:
/// Construct the Params object given a pitch-linear tensor's layout
CUTLASS_HOST_DEVICE
Params(Layout const &layout) : params_(layout) {}
/// Default constructor
Params() = default;
CUTLASS_HOST_DEVICE
Params(Base const &base)
: params_(base) {}
};
private:
/// Internal pointer type permits fast address arithmetic
using BytePointer = char *;
private:
//
// Data members
//
/// Data member to the tile access iterator
TileAccessIterator address_iterator_;
public:
/// Default constructor
PredicatedTileIterator() = default;
/// Constructs a TileIterator from its precomputed state, threadblock offset,
/// and thread ID
CUTLASS_HOST_DEVICE
PredicatedTileIterator(
/// Precomputed parameters object
Params const ¶ms,
/// Pointer to start of tensor
Pointer pointer,
/// Extent of tensor
TensorCoord extent,
/// ID of each participating thread
int thread_id,
/// Initial offset of threadblock
TensorCoord const &threadblock_offset,
/// Gather indices
int const *indices = nullptr)
: address_iterator_(params.params_, pointer, extent, thread_id,
threadblock_offset, indices) {}
/// Construct a PredicatedTileIterator with zero threadblock offset
CUTLASS_HOST_DEVICE
PredicatedTileIterator(
Params const ¶ms, ///< Precomputed parameters object
Pointer pointer, ///< Pointer to start of tensor
TensorCoord extent, ///< Extent of tensor
int thread_id ///< ID of each participating thread
)
: PredicatedTileIterator(params, pointer, extent, thread_id,
make_Coord(0, 0)) {}
/// Adds a pointer offset in units of Element
CUTLASS_HOST_DEVICE
void add_pointer_offset(LongIndex pointer_offset) {
address_iterator_.add_pointer_offset(pointer_offset);
}
/// Advances to the next tile in memory.
///
/// The first time this method is called, predicates are updated, and the
/// iterator's internal pointer is reverted to the first "steady state" tile.
/// Subsequent calls are lightweight and must only update the internal
/// pointer.
CUTLASS_HOST_DEVICE
PredicatedTileIterator &operator++() {
if (kAdvanceRank)
address_iterator_.add_tile_offset({0, 1});
else
address_iterator_.add_tile_offset({1, 0});
return *this;
}
/// Advances to the next tile in memory.
///
/// The first time this method is called, predicates are updated, and the
/// iterator's internal pointer is reverted to the first "steady state" tile.
/// Subsequent calls are lightweight and must only update the internal
/// pointer.
CUTLASS_HOST_DEVICE
PredicatedTileIterator operator++(int) {
PredicatedTileIterator self(*this);
operator++();
return self;
}
/// Clears the predicate set efficiently
CUTLASS_HOST_DEVICE
void clear_mask(bool enable = true) { address_iterator_.clear_mask(enable); }
/// Clears the predicate set efficiently
CUTLASS_HOST_DEVICE
void enable_mask() { address_iterator_.enable_mask(); }
/// Sets the predicate mask, overriding value stored in predicate iterator
CUTLASS_HOST_DEVICE
void set_mask(Mask const &mask) { address_iterator_.set_mask(mask); }
/// Gets the mask
CUTLASS_HOST_DEVICE
void get_mask(Mask &mask) { address_iterator_.get_mask(mask); }
CUTLASS_DEVICE
void load_with_pointer_offset(Fragment &frag, Index pointer_offset) {
load_with_byte_offset(frag, pointer_offset * sizeof_bits<Element>::value / 8);
}
CUTLASS_DEVICE
void load_with_byte_offset(Fragment &frag, LongIndex byte_offset) {
AccessType *frag_ptr = reinterpret_cast<AccessType *>(&frag);
CUTLASS_PRAGMA_UNROLL
for (int s = 0; s < ThreadMap::Iterations::kStrided; ++s) {
CUTLASS_PRAGMA_UNROLL
for (int c = 0; c < ThreadMap::Iterations::kContiguous; ++c) {
CUTLASS_PRAGMA_UNROLL
for (int v = 0; v < kAccessesPerVector; ++v) {
int idx = v + kAccessesPerVector * (c + s * ThreadMap::Iterations::kContiguous);
address_iterator_.set_iteration_index(idx);
char const *byte_ptr = reinterpret_cast<char const *>(address_iterator_.get()) + byte_offset;
AccessType const *access_ptr = reinterpret_cast<AccessType const *>(byte_ptr);
cutlass::arch::global_load<AccessType,
sizeof(AccessType)
>(
frag_ptr[idx], access_ptr, address_iterator_.valid());
++address_iterator_;
}
}
}
}
/// Loads a fragment from memory
CUTLASS_DEVICE
void load(Fragment &frag) { load_with_byte_offset(frag, 0); }
/// Store a fragment to memory
CUTLASS_DEVICE
void store_with_pointer_offset(Fragment const &frag, Index pointer_offset) {
store_with_byte_offset(frag, pointer_offset * sizeof_bits<Element>::value / 8);
}
/// Store a fragment to memory
CUTLASS_DEVICE
void store_with_byte_offset(Fragment const &frag, LongIndex byte_offset) {
address_iterator_.set_iteration_index(0);
AccessType const *frag_ptr = reinterpret_cast<AccessType const *>(&frag);
CUTLASS_PRAGMA_UNROLL
for (int s = 0; s < ThreadMap::Iterations::kStrided; ++s) {
CUTLASS_PRAGMA_UNROLL
for (int c = 0; c < ThreadMap::Iterations::kContiguous; ++c) {
CUTLASS_PRAGMA_UNROLL
for (int v = 0; v < kAccessesPerVector; ++v) {
int idx = v + kAccessesPerVector * (c + s * ThreadMap::Iterations::kContiguous);
char *byte_ptr = reinterpret_cast<char *>(address_iterator_.get()) + byte_offset;
AccessType *access_ptr = reinterpret_cast<AccessType *>(byte_ptr);
if (address_iterator_.valid()) {
*access_ptr = frag_ptr[idx];
}
++address_iterator_;
}
}
}
}
/// Store a fragment to memory
CUTLASS_DEVICE
void store(Fragment const &frag) { store_with_byte_offset(frag, 0); }
};
////////////////////////////////////////////////////////////////////////////////
/// Specialization of PredicatedTileIterator for column-major data.
///
/// Satisfies: ForwardTileIteratorConcept |
/// ReadableContiguousTileIteratorConcept |
/// WriteableContiguousTileIteratorConcept |
/// MaskedTileIteratorConcept
///
template <
typename Shape_,
typename Element_,
int AdvanceRank,
typename ThreadMap_,
int AccessSize,
bool Gather,
typename PermuteLayout
>
class PredicatedTileIterator<Shape_, Element_, layout::ColumnMajor, AdvanceRank,
ThreadMap_, AccessSize, Gather, PermuteLayout> {
public:
static_assert(AdvanceRank == 0 || AdvanceRank == 1,
"Specialization for pitch-linear iterator may along advance along the "
"contiguous(rank=0) or strided(rank=1) dimension.");
using Shape = Shape_;
using Element = Element_;
using Layout = layout::ColumnMajor;
static int const kAdvanceRank = AdvanceRank;
using ThreadMap = ThreadMap_;
using Index = typename Layout::Index;
using LongIndex = typename Layout::LongIndex;
using TensorRef = TensorRef<Element, Layout>;
using TensorView = TensorView<Element, Layout>;
using TensorCoord = typename Layout::TensorCoord;
using Pointer = Element *;
using NonConstPointer = typename platform::remove_const<Element>::type *;
using UnderlyingIterator = PredicatedTileIterator<
layout::PitchLinearShape<Shape::kRow, Shape::kColumn>,
Element,
layout::PitchLinear,
(kAdvanceRank == 0 ? 0 : 1),
ThreadMap,
AccessSize,
Gather,
PermuteLayout
>;
using AccessType = typename UnderlyingIterator::AccessType;
/// Fragment object to be loaded or stored
using Fragment = cutlass::Array<Element, ThreadMap::Iterations::kCount * ThreadMap::kElementsPerAccess>;
/// Predicate vector stores mask to guard accesses
using Mask = typename UnderlyingIterator::Mask;
/// Parameters object is precomputed state and is host-constructible
class Params {
private:
friend PredicatedTileIterator;
/// Parameters object
typename UnderlyingIterator::Params params_;
public:
/// Default constructor
Params() = default;
/// Construct the Params object given a pitch-linear tensor's layout
CUTLASS_HOST_DEVICE
Params(Layout const &layout): params_(layout::PitchLinear(layout.stride(0)))
{}
CUTLASS_HOST_DEVICE
Params(typename UnderlyingIterator::Params::Base const &base)
: params_(base) {}
};
private:
//
// Data members
//
/// Underlying pitch-linear tile iterator
UnderlyingIterator iterator_;
public:
/// Default constructor
PredicatedTileIterator() = default;
/// Constructs a TileIterator from its precomputed state, threadblock offset, and thread ID
CUTLASS_HOST_DEVICE
PredicatedTileIterator(
Params const ¶ms, ///< Precomputed parameters object
Pointer pointer, ///< Pointer to start of tensor
TensorCoord extent, ///< Extent of tensor
int thread_id, ///< ID of each participating thread
TensorCoord const &threadblock_offset, ///< Initial offset of threadblock
int const *indices = nullptr ///< gather/scatter indices, note no support for gather/scatter at this specialization
):
iterator_(
params.params_,
pointer,
layout::PitchLinearCoord(extent.row(), extent.column()),
thread_id,
layout::PitchLinearCoord(threadblock_offset.row(), threadblock_offset.column()),
indices)
{ }
/// Construct a PredicatedTileIterator with zero threadblock offset
CUTLASS_HOST_DEVICE
PredicatedTileIterator(
Params const ¶ms, ///< Precomputed parameters object
Pointer pointer, ///< Pointer to start of tensor
TensorCoord extent, ///< Extent of tensor
int thread_id ///< ID of each participating thread
): PredicatedTileIterator(params, pointer, extent, thread_id, make_Coord(0, 0)) { }
/// Adds a pointer offset in units of Element
CUTLASS_HOST_DEVICE
void add_pointer_offset(LongIndex pointer_offset) {
iterator_.add_pointer_offset(pointer_offset);
}
/// Advances to the next tile in memory.
///
/// The first time this method is called, predicates are updated, and the iterator's
/// internal pointer is reverted to the first "steady state" tile. Subsequent calls
/// are lightweight and must only update the internal pointer.
CUTLASS_HOST_DEVICE
PredicatedTileIterator &operator++() {
++iterator_;
return *this;
}
/// Advances to the next tile in memory.
///
/// The first time this method is called, predicates are updated, and the iterator's
/// internal pointer is reverted to the first "steady state" tile. Subsequent calls
/// are lightweight and must only update the internal pointer.
CUTLASS_HOST_DEVICE
PredicatedTileIterator operator++(int) {
PredicatedTileIterator self(*this);
operator++();
return self;
}
/// Clears the predicate set efficiently
CUTLASS_HOST_DEVICE
void clear_mask(bool enable = true) {
iterator_.clear_mask(enable);
}
/// Clears the predicate set efficiently
CUTLASS_HOST_DEVICE
void enable_mask() {
iterator_.enable_mask();
}
/// Sets the predicate mask, overriding value stored in predicate iterator
CUTLASS_HOST_DEVICE
void set_mask(Mask const &mask) {
iterator_.set_mask(mask);
}
/// Gets the mask
CUTLASS_HOST_DEVICE
void get_mask(Mask &mask) {
iterator_.get_mask(mask);
}
/// Loads a fragment from memory
CUTLASS_DEVICE
void load_with_pointer_offset(Fragment &frag, Index pointer_offset) {
iterator_.load_with_pointer_offset(frag, pointer_offset);
}
/// Loads a fragment from memory
CUTLASS_DEVICE
void load_with_byte_offset(Fragment &frag, LongIndex byte_offset) {
iterator_.load_with_byte_offset(frag, byte_offset);
}
/// Loads a fragment from memory
CUTLASS_DEVICE
void load(Fragment &frag) {
load_with_pointer_offset(frag, 0);
}
/// Store a fragment to memory
CUTLASS_DEVICE
void store_with_pointer_offset(Fragment const &frag, Index pointer_offset) {
iterator_.store_with_pointer_offset(frag, pointer_offset);
}
/// Store a fragment to memory
CUTLASS_DEVICE
void store_with_byte_offset(Fragment const &frag, LongIndex byte_offset) {
iterator_.store_with_byte_offset(frag, byte_offset);
}
/// Store a fragment to memory
CUTLASS_DEVICE
void store(Fragment const &frag) {
store_with_pointer_offset(frag, 0);
}
};
////////////////////////////////////////////////////////////////////////////////
/// Specialization of PredicatedTileIterator for row-major data.
///
/// Satisfies: ForwardTileIteratorConcept |
/// ReadableContiguousTileIteratorConcept |
/// WriteableContiguousTileIteratorConcept |
/// MaskedTileIteratorConcept
///
template <
typename Shape_,
typename Element_,
int AdvanceRank,
typename ThreadMap_,
int AccessSize,
bool Gather,
typename PermuteLayout
>
class PredicatedTileIterator<Shape_, Element_, layout::RowMajor, AdvanceRank,
ThreadMap_, AccessSize, Gather, PermuteLayout> {
public:
static_assert(AdvanceRank == 0 || AdvanceRank == 1,
"Specialization for pitch-linear iterator may along advance along the "
"contiguous(rank=0) or strided(rank=1) dimension.");
using Shape = Shape_;
using Element = Element_;
using Layout = layout::RowMajor;
static int const kAdvanceRank = AdvanceRank;
using ThreadMap = ThreadMap_;
using Index = typename Layout::Index;
using LongIndex = typename Layout::LongIndex;
using TensorRef = TensorRef<Element, Layout>;
using TensorView = TensorView<Element, Layout>;
using TensorCoord = typename Layout::TensorCoord;
using Pointer = Element *;
using NonConstPointer = typename platform::remove_const<Element>::type *;
using UnderlyingIterator = PredicatedTileIterator<
layout::PitchLinearShape<Shape::kColumn, Shape::kRow>,
Element,
layout::PitchLinear,
(kAdvanceRank == 0 ? 1 : 0),
ThreadMap,
AccessSize,
Gather,
PermuteLayout
>;
using AccessType = typename UnderlyingIterator::AccessType;
/// Fragment object to be loaded or stored
using Fragment = cutlass::Array<Element, ThreadMap::Iterations::kCount * ThreadMap::kElementsPerAccess>;
/// Predicate vector stores mask to guard accesses
using Mask = typename UnderlyingIterator::Mask;
/// Parameters object is precomputed state and is host-constructible
class Params {
private:
friend PredicatedTileIterator;
/// Parameters object
typename UnderlyingIterator::Params params_;
public:
/// Default constructor
Params() = default;
/// Construct the Params object given a pitch-linear tensor's layout
CUTLASS_HOST_DEVICE
Params(Layout const &layout): params_(layout::PitchLinear(layout.stride(0))) {}
CUTLASS_HOST_DEVICE
Params(typename UnderlyingIterator::Params::Base const &base)
: params_(base) {}
};
private:
//
// Data members
//
/// Underlying pitch-linear tile iterator
UnderlyingIterator iterator_;
public:
/// Default constructor
PredicatedTileIterator() = default;
/// Constructs a TileIterator from its precomputed state, threadblock offset, and thread ID
CUTLASS_HOST_DEVICE
PredicatedTileIterator(
Params const ¶ms, ///< Precomputed parameters object
Pointer pointer, ///< Pointer to start of tensor
TensorCoord extent, ///< Extent of tensor
int thread_id, ///< ID of each participating thread
TensorCoord const &threadblock_offset, ///< Initial offset of threadblock
int const *indices = nullptr ///< Gather indices
):
iterator_(
params.params_,
pointer,
layout::PitchLinearCoord(extent.column(), extent.row()),
thread_id,
layout::PitchLinearCoord(threadblock_offset.column(), threadblock_offset.row()),
indices
) { }
/// Construct a PredicatedTileIterator with zero threadblock offset
CUTLASS_HOST_DEVICE
PredicatedTileIterator(
Params const ¶ms, ///< Precomputed parameters object
Pointer pointer, ///< Pointer to start of tensor
TensorCoord extent, ///< Extent of tensor
int thread_id ///< ID of each participating thread
): PredicatedTileIterator(params, pointer, extent, thread_id, make_Coord(0, 0)) { }
/// Adds a pointer offset in units of Element
CUTLASS_HOST_DEVICE
void add_pointer_offset(LongIndex pointer_offset) {
iterator_.add_pointer_offset(pointer_offset);
}
/// Advances to the next tile in memory.
///
/// The first time this method is called, predicates are updated, and the iterator's
/// internal pointer is reverted to the first "steady state" tile. Subsequent calls
/// are lightweight and must only update the internal pointer.
CUTLASS_HOST_DEVICE
PredicatedTileIterator &operator++() {
++iterator_;
return *this;
}
/// Advances to the next tile in memory.
///
/// The first time this method is called, predicates are updated, and the iterator's
/// internal pointer is reverted to the first "steady state" tile. Subsequent calls
/// are lightweight and must only update the internal pointer.
CUTLASS_HOST_DEVICE
PredicatedTileIterator operator++(int) {
PredicatedTileIterator self(*this);
operator++();
return self;
}
/// Clears the predicate set efficiently
CUTLASS_HOST_DEVICE
void clear_mask(bool enable = true) {
iterator_.clear_mask(enable);
}
/// Clears the predicate set efficiently
CUTLASS_HOST_DEVICE
void enable_mask() {
iterator_.enable_mask();
}
/// Sets the predicate mask, overriding value stored in predicate iterator
CUTLASS_HOST_DEVICE
void set_mask(Mask const &mask) {
iterator_.set_mask(mask);
}
/// Gets the mask
CUTLASS_HOST_DEVICE
void get_mask(Mask &mask) {
iterator_.get_mask(mask);
}
/// Loads a fragment from memory
CUTLASS_DEVICE
void load_with_pointer_offset(Fragment &frag, Index pointer_offset) {
iterator_.load_with_pointer_offset(frag, pointer_offset);
}
/// Loads a fragment from memory
CUTLASS_DEVICE
void load_with_byte_offset(Fragment &frag, LongIndex byte_offset) {
iterator_.load_with_byte_offset(frag, byte_offset);
}
/// Loads a fragment from memory
CUTLASS_DEVICE
void load(Fragment &frag) {
load_with_pointer_offset(frag, 0);
}
/// Store a fragment to memory
CUTLASS_DEVICE
void store_with_pointer_offset(Fragment const &frag, Index pointer_offset) {
iterator_.store_with_pointer_offset(frag, pointer_offset);
}
/// Store a fragment to memory
CUTLASS_DEVICE
void store_with_byte_offset(Fragment const &frag, LongIndex byte_offset) {
iterator_.store_with_byte_offset(frag, byte_offset);
}
/// Store a fragment to memory
CUTLASS_DEVICE
void store(Fragment const &frag) {
store_with_pointer_offset(frag, 0);
}
};
////////////////////////////////////////////////////////////////////////////////
/// Specialization of PredicatedTileIterator for affine rank-2 data.
///
/// Satisfies: ForwardTileIteratorConcept |
/// ReadableContiguousTileIteratorConcept |
/// WriteableContiguousTileIteratorConcept |
/// MaskedTileIteratorConcept
///
template <typename Shape_, typename Element_, int AdvanceRank,
typename ThreadMap_, int AccessSize>
class PredicatedTileIterator<Shape_, Element_, layout::AffineRankN<2>, AdvanceRank,
ThreadMap_, AccessSize, false> {
public:
static_assert(
AdvanceRank == 0 || AdvanceRank == 1,
"Specialization for pitch-linear iterator may advance along the "
"contiguous(rank=0) or strided(rank=1) dimension.");
using Shape = Shape_;
using Element = Element_;
using Layout = layout::AffineRankN<2>;
static int const kAdvanceRank = AdvanceRank;
using ThreadMap = ThreadMap_;
using Index = typename Layout::Index;
using LongIndex = typename Layout::LongIndex;
using TensorRef = TensorRef<Element, Layout>;
using TensorView = TensorView<Element, Layout>;
using TensorCoord = typename Layout::TensorCoord;
using Pointer = Element *;
using NonConstPointer = typename platform::remove_const<Element>::type *;
/// Type used for internal memory accesses
using AccessType = AlignedArray<Element, AccessSize, (AccessSize * sizeof_bits<Element>::value / 8)>;
/// Underlying iterator to compute the addresses
using TileAccessIterator =
PredicatedTileAccessIterator<Shape, Element, Layout, kAdvanceRank,
ThreadMap, AccessType>;
static int const kAccessesPerVector = TileAccessIterator::kAccessesPerVector;
/// Fragment object to be loaded or stored
using Fragment = cutlass::Array<Element, ThreadMap::Iterations::kCount *
ThreadMap::kElementsPerAccess>;
/// Predicate vector stores mask to guard accesses
using Mask = typename TileAccessIterator::Mask;
/// Parameters object is precomputed state and is host-constructible
class Params {
public:
friend PredicatedTileIterator;
private:
/// Parameters object
typename TileAccessIterator::Params params_;
public:
/// Construct the Params object given a pitch-linear tensor's layout
CUTLASS_HOST_DEVICE
Params(Layout const &layout) : params_(layout) {}
/// Default constructor
Params() = default;
};
private:
/// Internal pointer type permits fast address arithmetic
using BytePointer = char *;
private:
//
// Data members
//
/// Data member to the tile access iterator
TileAccessIterator address_iterator_;
public:
/// Default constructor
PredicatedTileIterator() = default;
/// Constructs a TileIterator from its precomputed state, threadblock offset,
/// and thread ID
CUTLASS_HOST_DEVICE
PredicatedTileIterator(
/// Precomputed parameters object
Params const ¶ms,
/// Pointer to start of tensor
Pointer pointer,
/// Extent of tensor
TensorCoord extent,
/// ID of each participating thread
int thread_id,
/// Initial offset of threadblock
TensorCoord const &threadblock_offset,
int const *indices = nullptr ///< gather/scatter indices, note no support for gather/scatter at this specialization
)
: address_iterator_(params.params_, pointer, extent, thread_id,
threadblock_offset) {}
/// Construct a PredicatedTileIterator with zero threadblock offset
CUTLASS_HOST_DEVICE
PredicatedTileIterator(
Params const ¶ms, ///< Precomputed parameters object
Pointer pointer, ///< Pointer to start of tensor
TensorCoord extent, ///< Extent of tensor
int thread_id ///< ID of each participating thread
)
: PredicatedTileIterator(params, pointer, extent, thread_id,
make_Coord(0, 0)) {}
/// Adds a pointer offset in units of Element
CUTLASS_HOST_DEVICE
void add_pointer_offset(LongIndex pointer_offset) {
address_iterator_.add_pointer_offset(pointer_offset);
}
/// Advances to the next tile in memory.
///
/// The first time this method is called, predicates are updated, and the
/// iterator's internal pointer is reverted to the first "steady state" tile.
/// Subsequent calls are lightweight and must only update the internal
/// pointer.
CUTLASS_HOST_DEVICE
PredicatedTileIterator &operator++() {
if (kAdvanceRank)
address_iterator_.add_tile_offset(make_Coord(0, 1));
else
address_iterator_.add_tile_offset(make_Coord(1, 0));
return *this;
}
/// Advances to the next tile in memory.
///
/// The first time this method is called, predicates are updated, and the
/// iterator's internal pointer is reverted to the first "steady state" tile.
/// Subsequent calls are lightweight and must only update the internal
/// pointer.
CUTLASS_HOST_DEVICE
PredicatedTileIterator operator++(int) {
PredicatedTileIterator self(*this);
operator++();
return self;
}
/// Clears the predicate set efficiently
CUTLASS_HOST_DEVICE
void clear_mask(bool enable = true) { address_iterator_.clear_mask(enable); }
/// Clears the predicate set efficiently
CUTLASS_HOST_DEVICE
void enable_mask() { address_iterator_.enable_mask(); }
/// Sets the predicate mask, overriding value stored in predicate iterator
CUTLASS_HOST_DEVICE
void set_mask(Mask const &mask) { address_iterator_.set_mask(mask); }
/// Gets the mask
CUTLASS_HOST_DEVICE
void get_mask(Mask &mask) { address_iterator_.get_mask(mask); }