-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy path294.go
63 lines (55 loc) · 1.08 KB
/
294.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
// UVa 294 - Divisors
// If a number N == a^i * b^j * ... * c^k, then N has (i+1)*(j+1)*...*(k+1) divisors.
// If d is a divisor of n, then so is n/d, but d & n/d cannot be both greater than sqrt(n).
package main
import (
"fmt"
"os"
)
func factorize(n int) map[int]int {
if n == 1 {
return nil
}
f := make(map[int]int)
here:
for t := 2; t*t <= n; t++ {
for n%t == 0 {
f[t]++
if n /= t; n == 1 {
break here
}
}
}
if n != 1 {
f[n] = 1
}
return f
}
func numberOfDivisors(f map[int]int) int {
p := 1
if f != nil {
for _, value := range f {
p *= value + 1
}
}
return p
}
func main() {
in, _ := os.Open("294.in")
defer in.Close()
out, _ := os.Create("294.out")
defer out.Close()
var n, L, U int
for fmt.Fscanf(in, "%d", &n); n > 0; n-- {
var num, max, divisors int
fmt.Fscanf(in, "%d%d", &L, &U)
for j := L; j <= U; j++ {
factors := factorize(j)
if divisors = numberOfDivisors(factors); divisors > max {
max = divisors
num = j
}
}
fmt.Fprintf(out, "Between %d and %d, %d has a maximum of %d divisors.\n", L, U, num, max)
}
}