-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
361 lines (306 loc) · 16.3 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
from __future__ import print_function, division
import os
import time
import torch
import argparse
import torch.nn as nn
import torch.utils.data
import torch.nn.parallel
import torch.optim as optim
import torch.backends.cudnn as cudnn
from tensorboardX import SummaryWriter
from torch.utils.data import DataLoader
import gc
import wandb
from matplotlib import pyplot
import cv2
from datasets import __datasets__
from models import __models__, model_loss
from utils import *
from utils.metrics import log_sizes
import warnings
warnings.filterwarnings("ignore")
cudnn.benchmark = True
parser = argparse.ArgumentParser(description='MobileStereoNet')
parser.add_argument('--model', default='MSNet3D', help='select a model structure', choices=__models__.keys())
parser.add_argument('--maxdisp', type=int, default=192, help='maximum disparity')
parser.add_argument('--dataset', required=True, help='dataset name', choices=__datasets__.keys())
parser.add_argument('--datapath', required=True, help='data path')
parser.add_argument('--trainlist', required=True, help='training list')
parser.add_argument('--vallist', required=True, help='validation list')
parser.add_argument('--lr', type=float, default=0.001, help='base learning rate')
parser.add_argument('--batch_size', type=int, default=4, help='training batch size')
parser.add_argument('--val_batch_size', type=int, default=4, help='valdation batch size')
parser.add_argument('--epochs', type=int, required=True, help='number of epochs to train')
parser.add_argument('--lrepochs', type=str, required=True, help='the epochs to decay lr: the downscale rate')
parser.add_argument('--logdir', required=True, help='the directory to save logs and checkpoints')
parser.add_argument('--loadckpt', help='load the weights from a specific checkpoint')
parser.add_argument('--resume', action='store_true', help='continue training the model')
parser.add_argument('--seed', type=int, default=1, metavar='S', help='random seed (default: 1)')
parser.add_argument('--summary_freq', type=int, default=100, help='the frequency of saving summary')
parser.add_argument('--save_freq', type=int, default=1, help='the frequency of saving checkpoint')
parser.add_argument('--val_img_freq', type=int, required=True, help='frequency of creating example images')
parser.add_argument('--wandb', type=str, required=True, help='wandb project')
parser.add_argument('--compute_complexity', action='store_true', help='output complexity and model size')
# parse arguments, set seeds
args = parser.parse_args()
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
os.makedirs(args.logdir, exist_ok=True)
os.makedirs('./predictions', exist_ok=True)
os.makedirs('./prediction_errors', exist_ok=True)
# create summary logger
print("creating new summary file")
logger = SummaryWriter(args.logdir)
# dataset, dataloader
StereoDataset = __datasets__[args.dataset]
train_dataset = StereoDataset(args.datapath, args.trainlist, True)
val_dataset = StereoDataset(args.datapath, args.vallist, False)
TrainImgLoader = DataLoader(train_dataset, args.batch_size, shuffle=True, num_workers=8, drop_last=True)
ValImgLoader = DataLoader(val_dataset, args.val_batch_size, shuffle=False, num_workers=4, drop_last=False)
if args.dataset == "kitti":
inf_filenames = "./filenames/kitti15_full.txt"
else:
inf_filenames = "./filenames/sceneflow_small_test_450.txt"
inf_dataset = StereoDataset(args.datapath, inf_filenames, False)
InfImgLoader = DataLoader(inf_dataset, 1, shuffle=False, num_workers=8, drop_last=False)
# model, optimizer
model = __models__[args.model](args.maxdisp)
# wandb log and print sizes
wandb.init(project=args.wandb, entity='lightstereomatching', settings=wandb.Settings(_disable_stats=True, start_method='fork'))
wandb.run.name = args.model
if args.compute_complexity:
log_sizes(model)
model = nn.DataParallel(model)
model.cuda()
optimizer = optim.Adam(model.parameters(), lr=args.lr, betas=(0.9, 0.999))
# load parameters
start_epoch = 0
if args.resume:
# find all checkpoints file and sort according to epoch id
all_saved_ckpts = [fn for fn in os.listdir(args.logdir) if fn.endswith(".ckpt")]
all_saved_ckpts = sorted(all_saved_ckpts, key=lambda x: int(x.split('_')[-1].split('.')[0]))
# use the latest checkpoint file
loadckpt = os.path.join(args.logdir, all_saved_ckpts[-1])
print("loading the lastest model in logdir: {}".format(loadckpt))
state_dict = torch.load(loadckpt)
model.load_state_dict(state_dict['model'])
optimizer.load_state_dict(state_dict['optimizer'])
start_epoch = state_dict['epoch'] + 1
elif args.loadckpt:
# load the checkpoint file specified by args.loadckpt
print("loading model {}".format(args.loadckpt))
state_dict = torch.load(args.loadckpt)
model.load_state_dict(state_dict['model'])
print("start at epoch {}".format(start_epoch))
def train():
best_checkpoint_EPE = 100
for epoch_idx in range(start_epoch, args.epochs):
adjust_learning_rate(optimizer, epoch_idx, args.lr, args.lrepochs)
# training
for batch_idx, sample in enumerate(TrainImgLoader):
global_step = len(TrainImgLoader) * epoch_idx + batch_idx
do_summary = global_step % args.summary_freq == 0
start_time = time.time()
loss, scalar_outputs, image_outputs = train_sample(sample, compute_metrics=do_summary)
train_step_time = time.time() - start_time
scalar_outputs["train_step_time"] = train_step_time
if do_summary:
wandb.log({'train_loss': scalar_outputs['loss'],
'train_EPE': scalar_outputs['EPE'][-1],
'train_D1': scalar_outputs['D1'][-1],
'train_Thres1': scalar_outputs['Thres1'][-1],
'train_Thres2': scalar_outputs['Thres2'][-1],
'train_Thres3': scalar_outputs['Thres3'][-1],
'train_step': global_step,
'train_step_time': scalar_outputs["train_step_time"]
})
save_scalars(logger, 'train', scalar_outputs, global_step)
save_images(logger, 'train', image_outputs, global_step)
del scalar_outputs, image_outputs
print('Epoch {}/{}, Iter {}/{}, train loss = {:.3f}, time = {:.3f}'.format(epoch_idx, args.epochs,
batch_idx,
len(TrainImgLoader), loss,
train_step_time))
# saving checkpoints
if (epoch_idx + 1) % args.save_freq == 0:
checkpoint_data = {'epoch': epoch_idx, 'model': model.state_dict(), 'optimizer': optimizer.state_dict()}
torch.save(checkpoint_data, "{}/checkpoint_{:0>6}.ckpt".format(args.logdir, epoch_idx))
gc.collect()
# validation
avg_val_scalars = AverageMeterDict()
for batch_idx, sample in enumerate(ValImgLoader):
global_step = len(ValImgLoader) * epoch_idx + batch_idx
val_run_step = len(ValImgLoader) * batch_idx
create_img = val_run_step % args.val_img_freq == 0
loss, scalar_outputs, image_outputs = val_sample(sample, current_epoch=epoch_idx, create_image=create_img)
wandb.log({'val_loss': scalar_outputs['loss'],
'val_EPE': scalar_outputs['EPE'][-1],
'val_D1': scalar_outputs['D1'][-1],
'val_Thres1': scalar_outputs['Thres1'][-1],
'val_Thres2': scalar_outputs['Thres2'][-1],
'val_Thres3': scalar_outputs['Thres3'][-1],
'val_step': global_step,
'val_run_step': val_run_step,
'inf_time': scalar_outputs['inf_time']
})
save_scalars(logger, 'val', scalar_outputs, global_step)
save_images(logger, 'val', image_outputs, global_step)
avg_val_scalars.update(scalar_outputs)
print('Epoch {}/{}, Iter {}/{}, val loss = {:.3f}, time = {:3f}'.format(epoch_idx, args.epochs,
batch_idx,
len(ValImgLoader), loss,
scalar_outputs['inf_time']))
del scalar_outputs, image_outputs
avg_val_scalars = avg_val_scalars.mean()
wandb.log({'avg_val_loss': avg_val_scalars['loss'],
'avg_val_EPE': avg_val_scalars['EPE'][0],
'avg_val_D1': avg_val_scalars['D1'][0],
'avg_val_Thres1': avg_val_scalars['Thres1'][0],
'avg_val_Thres2': avg_val_scalars['Thres2'][0],
'avg_val_Thres3': avg_val_scalars['Thres3'][0],
'avg_inf_time': avg_val_scalars['inf_time'],
'epoch': epoch_idx
})
save_scalars(logger, 'fullval', avg_val_scalars, len(TrainImgLoader) * (epoch_idx + 1))
print("avg_val_scalars", avg_val_scalars)
# saving new best checkpoint
if avg_val_scalars['EPE'][0] < best_checkpoint_EPE:
best_checkpoint_EPE = avg_val_scalars['EPE'][0]
print("Overwriting best checkpoint")
checkpoint_data = {'epoch': epoch_idx, 'model': model.state_dict(), 'optimizer': optimizer.state_dict()}
torch.save(checkpoint_data, "{}/best.ckpt".format(args.logdir))
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
test_inf()
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
gc.collect()
# train one sample
def train_sample(sample, compute_metrics=False):
model.train()
imgL, imgR, disp_gt = sample['left'], sample['right'], sample['disparity']
imgL = imgL.cuda()
imgR = imgR.cuda()
disp_gt = disp_gt.cuda()
optimizer.zero_grad()
disp_ests = model(imgL, imgR)
mask = (disp_gt < args.maxdisp) & (disp_gt > 0)
loss = model_loss(disp_ests, disp_gt, mask)
scalar_outputs = {"loss": loss}
image_outputs = {"disp_est": disp_ests, "disp_gt": disp_gt, "imgL": imgL, "imgR": imgR}
if compute_metrics:
with torch.no_grad():
#image_outputs["errormap"] = [disp_error_image_func(disp_est, disp_gt) for disp_est in disp_ests]
scalar_outputs["EPE"] = [EPE_metric(disp_est, disp_gt, mask) for disp_est in disp_ests]
scalar_outputs["D1"] = [D1_metric(disp_est, disp_gt, mask) for disp_est in disp_ests]
scalar_outputs["Thres1"] = [Thres_metric(disp_est, disp_gt, mask, 1.0) for disp_est in disp_ests]
scalar_outputs["Thres2"] = [Thres_metric(disp_est, disp_gt, mask, 2.0) for disp_est in disp_ests]
scalar_outputs["Thres3"] = [Thres_metric(disp_est, disp_gt, mask, 3.0) for disp_est in disp_ests]
loss.backward()
optimizer.step()
return tensor2float(loss), tensor2float(scalar_outputs), image_outputs
# val one sample
@make_nograd_func
def val_sample(sample, current_epoch, create_image=False):
model.eval()
imgL, imgR, disp_gt = sample['left'], sample['right'], sample['disparity']
imgL = imgL.cuda()
imgR = imgR.cuda()
disp_gt = disp_gt.cuda()
scalar_outputs = {}
start_time = time.time()
with torch.no_grad():
disp_ests = model(imgL, imgR)
scalar_outputs["inf_time"] = time.time() - start_time
mask = (disp_gt < args.maxdisp) & (disp_gt > 0)
loss = model_loss(disp_ests, disp_gt, mask)
scalar_outputs["loss"] = loss
image_outputs = {"disp_est": disp_ests, "disp_gt": disp_gt, "imgL": imgL, "imgR": imgR}
scalar_outputs["D1"] = [D1_metric(disp_est, disp_gt, mask) for disp_est in disp_ests]
scalar_outputs["EPE"] = [EPE_metric(disp_est, disp_gt, mask) for disp_est in disp_ests]
scalar_outputs["Thres1"] = [Thres_metric(disp_est, disp_gt, mask, 1.0) for disp_est in disp_ests]
scalar_outputs["Thres2"] = [Thres_metric(disp_est, disp_gt, mask, 2.0) for disp_est in disp_ests]
scalar_outputs["Thres3"] = [Thres_metric(disp_est, disp_gt, mask, 3.0) for disp_est in disp_ests]
if not create_image:
return tensor2float(loss), tensor2float(scalar_outputs), image_outputs
else:
current_epoch = str(current_epoch)
os.makedirs('./predictions/' + current_epoch, exist_ok=True)
os.makedirs('./prediction_errors/' + current_epoch, exist_ok=True)
EPEs = tensor2numpy(scalar_outputs["EPE"])
D1s = tensor2numpy(scalar_outputs["D1"])
disp_est_tn = disp_ests[-1]
disp_est_np = tensor2numpy(disp_est_tn)
error_map = disp_error_image_func(disp_est_tn, sample["disparity"])
error_map = tensor2numpy(error_map.permute(0, 2, 3, 1))
top_pad_np = tensor2numpy(sample["top_pad"])
right_pad_np = tensor2numpy(sample["right_pad"])
left_filenames = sample["left_filename"]
for disp_est, top_pad, right_pad, fn, er_disp, EPE, D1 in zip(disp_est_np, top_pad_np,
right_pad_np, left_filenames,
error_map, EPEs, D1s):
if args.dataset == 'kitti':
disp_est = np.array(disp_est[top_pad:, :-right_pad], dtype=np.float32)
else:
disp_est = np.array(disp_est, dtype=np.float32)
name = fn.split('/')
if args.dataset == 'drivingstereo':
fn = os.path.join("predictions/" + current_epoch, '_'.join(name[1:]))
fnerror = os.path.join("prediction_errors/" + current_epoch, '_'.join(name[1:]))
else:
fn = os.path.join("predictions/" + current_epoch, '_'.join(name[2:]))
fnerror = os.path.join("prediction_errors/" + current_epoch, '_'.join(name[2:]))
print("saving to", fn, disp_est.shape)
disp_est_uint = np.round(disp_est)
pyplot.imsave(fn, disp_est_uint, cmap='jet')
disp_est_uint = cv2.imread(fn)
disp_est_uint = cv2.putText(disp_est_uint, 'EPE: {:.2f}, D1: {:.2f}'.format
(np.round(EPE, 2), np.round(D1 * 100, 2)),
(300, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 3)
cv2.imwrite(fn, disp_est_uint)
pyplot.imsave(fnerror, er_disp)
er_disp = cv2.imread(fnerror)
er_disp = cv2.putText(er_disp, 'EPE: {:.2f}, D1: {:.2f}'.format
(np.round(EPE, 2), np.round(D1 * 100, 2)),
(300, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 3)
cv2.imwrite(fnerror, er_disp)
#print(sample["left"][0].shape)
images = {fn: [wandb.Image(fn), wandb.Image(fnerror), wandb.Image(sample["left"][0])]}
wandb.log(images)
return tensor2float(loss), tensor2float(scalar_outputs), image_outputs
def test_inf():
# INIT LOGGERS
starter, ender = torch.cuda.Event(enable_timing=True), torch.cuda.Event(enable_timing=True)
repetitions = 200
timings = np.zeros((repetitions, 1))
# GPU-WARM-UP
# for batch_idx, sample in enumerate(ValImgLoader):
# print(sample['left'].shape)
# _ = model(sample['left'].cuda(), sample['right'].cuda())
# if batch_idx > 20:
# break
#MEASURE PERFORMANCE
for batch_idx, sample in enumerate(InfImgLoader):
sample['left'].cuda()
sample['right'].cuda()
with torch.no_grad():
starter.record()
start = time.time()
_ = model(sample['left'], sample['right'])
ender.record()
# WAIT FOR GPU SYNC
torch.cuda.synchronize()
curr_time = starter.elapsed_time(ender)
if batch_idx == repetitions:
break
timings[batch_idx] = curr_time
mean_syn = np.sum(timings[10:]) / (repetitions - 10)
std_syn = np.std(timings[10:])
wandb.log({'Sync_inftime_mean': mean_syn,
'Sync_inftime_std': std_syn})
print('Sync_inftime_mean: ', mean_syn)
print('Sync_inftime_std: ', std_syn)
if __name__ == '__main__':
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
test_inf()
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
train()