-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
249 lines (202 loc) · 9.13 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
from __future__ import print_function, division
import argparse
import os
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim as optim
import torch.utils.data
from torch.autograd import Variable
import torchvision.utils as vutils
import torch.nn.functional as F
import numpy as np
import time
from tensorboardX import SummaryWriter
from datasets import __datasets__
from models import __models__
from utils import *
from torch.utils.data import DataLoader
import gc
# import skimage
# import skimage.io
import wandb
from matplotlib import pyplot
import cv2
import warnings
warnings.filterwarnings("ignore")
cudnn.benchmark = True
parser = argparse.ArgumentParser(description='Group-wise Correlation Stereo Network (GwcNet)')
parser.add_argument('--model', default='gwcnet-g', help='select a model structure', choices=__models__.keys())
parser.add_argument('--maxdisp', type=int, default=192, help='maximum disparity')
parser.add_argument('--dataset', default='kitti', help='dataset name', choices=__datasets__.keys())
parser.add_argument('--datapath', required=True, help='data path')
parser.add_argument('--testlist', required=True, help='testing list')
parser.add_argument('--loadckpt', required=True, help='load the weights from a specific checkpoint')
parser.add_argument('--example_img_freq', default=20, type=int, help='how often error maps and disparitys are created')
parser.add_argument('--kd_loss_config', help='specifies which losses are used', type=str)
# parse arguments
args = parser.parse_args()
# dataset, dataloader
StereoDataset = __datasets__[args.dataset]
test_dataset = StereoDataset(args.datapath, args.testlist, False)
TestImgLoader = DataLoader(test_dataset, 1, shuffle=False, num_workers=4, drop_last=False)
kd_loss_config_strings = [str(item) for item in args.kd_loss_config.split(',')]
kd_loss_config = {'feat_config': kd_loss_config_strings[0],
'soft_config': kd_loss_config_strings[1],
'tpw_config':kd_loss_config_strings[2]
}
# model, optimizer
model = __models__[args.model](args.maxdisp, kd_loss_config)
def test_inf():
# INIT LOGGERS
starter, ender = torch.cuda.Event(enable_timing=True), torch.cuda.Event(enable_timing=True)
repetitions = 200
timings = np.zeros((repetitions, 1))
# GPU-WARM-UP
crop_width = 960
crop_height = 512
for i in range(40):
left = torch.rand(1, 3, crop_height, crop_width).cuda()
right = torch.rand(1, 3, crop_height, crop_width).cuda()
print(left.shape, i)
with torch.no_grad():
_ = model(left, right)
# MEASURE PERFORMANCE
for batch_idx in range(repetitions):
left = torch.rand(1,3,crop_height,crop_width).cuda()
right = torch.rand(1,3,crop_height,crop_width).cuda()
print(left.shape, batch_idx)
with torch.no_grad():
starter.record()
_ = model(left, right)
ender.record()
# WAIT FOR GPU SYNC
torch.cuda.synchronize()
curr_time = starter.elapsed_time(ender)
if batch_idx == repetitions:
break
timings[batch_idx] = curr_time
mean_syn = np.sum(timings[10:]) / (repetitions - 10)
std_syn = np.std(timings[10:])
print({'Sync_inftime_mean': mean_syn,
'Sync_inftime_std': std_syn})
print('Sync_inftime_mean: ', mean_syn)
print('Sync_inftime_std: ', std_syn)
# model.cuda()
# test_inf()
model = nn.DataParallel(model)
model.cuda()
# load parameters
print("loading model {}".format(args.loadckpt))
state_dict = torch.load(args.loadckpt)
model.load_state_dict(state_dict['model'])
def print_model_size(mdl):
torch.save(mdl.state_dict(), "tmp.pt")
print("%.2f MB" %(os.path.getsize("tmp.pt")/1e6))
os.remove('tmp.pt')
print("Model size:")
print_model_size(model)
wandb.init(project="GwcDist")
def test():
Loss_list = []
EPE_list = []
D1_list = []
Threshold3_list = []
inference_time_list = []
os.makedirs('./predictions', exist_ok=True)
os.makedirs('./prediction_errors', exist_ok=True)
for batch_idx, sample in enumerate(TestImgLoader):
start_time = time.time()
disp_ests, losses, EPEs, D1s, Threshold3s = test_sample(sample)
inference_time = time.time() - start_time
print('Iter {}/{}, time = {:.3f}'.format(batch_idx, len(TestImgLoader),
inference_time))
losses = tensor2numpy(losses)
EPEs = tensor2numpy(EPEs)
D1s = tensor2numpy(D1s)
Threshold3s = tensor2numpy(Threshold3s)
Loss_list.append(losses)
EPE_list.append(EPEs)
D1_list.append(D1s * 100)
Threshold3_list.append(Threshold3s * 100)
inference_time_list.append(inference_time)
if len(Loss_list) % args.example_img_freq == 0:
disp_est_tn = disp_ests[-1]
disp_est_np = tensor2numpy(disp_est_tn)
error_map = disp_error_image_func(disp_est_tn, sample["disparity"])
error_map = tensor2numpy(error_map.permute(0, 2, 3, 1))
top_pad_np = tensor2numpy(sample["top_pad"])
right_pad_np = tensor2numpy(sample["right_pad"])
left_filenames = sample["left_filename"]
for disp_est, top_pad, right_pad, fn, er_disp, EPE, D1, Threshold3 in zip(disp_est_np, top_pad_np,
right_pad_np, left_filenames,
error_map, EPEs, D1s, Threshold3s):
assert len(disp_est.shape) == 2
print(disp_est)
if args.dataset == 'kitti':
disp_est = np.array(disp_est[top_pad:, :-right_pad], dtype=np.float32)
else:
disp_est = np.array(disp_est, dtype=np.float32)
name = fn.split('/')
if args.dataset == 'drivingstereo':
fn = os.path.join("predictions/", '_'.join(name[1:]))
fnerror = os.path.join("prediction_errors/", '_'.join(name[1:]))
else:
fn = os.path.join("predictions/", '_'.join(name[2:]))
fnerror = os.path.join("prediction_errors/", '_'.join(name[2:]))
print("saving to", fn, disp_est.shape)
disp_est_uint = np.round(disp_est)
print(disp_est_uint.shape)
pyplot.imsave(fn, disp_est_uint, cmap='jet')
disp_est_uint = cv2.imread(fn)
disp_est_uint = cv2.putText(disp_est_uint, 'EPE: {:.2f}, D1: {:.2f}'.format
(np.round(EPE, 2), np.round(D1 * 100, 2)),
(300, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 3)
cv2.imwrite(fn, disp_est_uint)
pyplot.imsave(fnerror, er_disp)
er_disp = cv2.imread(fnerror)
er_disp = cv2.putText(er_disp, 'EPE: {:.2f}, D1: {:.2f}'.format
(np.round(EPE, 2), np.round(D1 * 100, 2)),
(300, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 3)
cv2.imwrite(fnerror, er_disp)
wandb.log({'loss': losses[0],
'EPE': EPEs[0],
'D1': D1s[0] * 100,
'Threshold3': Threshold3s[0] * 100,
'inference time': inference_time,
fn: [wandb.Image(fn), wandb.Image(fnerror), wandb.Image(sample["left"])]
})
else:
wandb.log({'loss': losses[0],
'EPE': EPEs[0],
'D1': D1s[0] * 100,
'Threshold3': Threshold3s[0] * 100,
'inference time': inference_time,
})
wandb.log({'avg_loss': np.mean(np.array(Loss_list)),
'avg_EPE': np.mean(np.array(EPE_list)),
'avg_D1': np.mean(np.array(D1_list)),
'avg_Threshold3': np.mean(np.array(Threshold3_list)),
'avg_inference_time': np.mean(np.array(inference_time_list))
})
print('mean Loss:', np.mean(np.array(Loss_list)))
print('mean EPE:', np.mean(np.array(EPE_list)))
print('mean D1:', np.mean(np.array(D1_list)))
print('mean Threshold3:', np.mean(np.array(Threshold3_list)))
print('avg_inference_time', np.mean(np.array(inference_time_list)))
# test one sample
@make_nograd_func
def test_sample(sample):
model.eval()
disp_ests = model(sample['left'].cuda(), sample['right'].cuda())
### Compute metrics ###
disp_gt = sample['disparity'].cuda()
mask = (disp_gt < args.maxdisp) & (disp_gt > 0)
losses = [F.smooth_l1_loss(disp_est[mask], disp_gt[mask], size_average=True) for disp_est in disp_ests]
EPEs = [EPE_metric(disp_est, disp_gt, mask) for disp_est in disp_ests]
D1s = [D1_metric(disp_est, disp_gt, mask) for disp_est in disp_ests]
Threshold3s = [Thres_metric(disp_est, disp_gt, mask, 3.0) for disp_est in disp_ests]
return disp_ests, losses, EPEs, D1s, Threshold3s
if __name__ == '__main__':
test()